%%
% svm 简单算法设计 --启发式选择
%%
clc
clear
close all
% step=0.05;error=1.2;
% [data, label]=generate_sample(step,error);
category=load(‘category.mat‘);
label=category.label;
feature=load(‘feature.mat‘);
data=feature.data;
[num_data,d] = size(data); % 样本数量,维度,维度在下面好像没有用到
%% 定义向量机参数
alphas = ones(num_data,1)-0.999999;
b = 0;
error = zeros(num_data,2);
tol = 0.001;
C = 600000;
iter = 0;
max_iter = 30;
alpha_change = 0;
entireSet = 1;%作为一个标记看是选择全遍历还是部分遍历
%第一个变量先遍历间隔边界(0<alpha<C)上的支持向量点(此时松弛变量等于0),检验其是否满足KKT条件,若全部满足再遍历整个样本
%第一个变量选取违反KKT条件最严重的样本点所对应的变量,意思是首先更新最糟糕的点
%选择第二个变量要使得|E1-E2|最大,即使得乘子的变化最大,要用启发式标准
%第二个变量的选择好像是先看有没有违反KKT条件的点,若有则选择,若没有则按照|E1-E2|来选择
while (iter < max_iter) && ((alpha_change > 0) || entireSet)
alpha_change = 0;
% -----------全遍历样本-------------------------
if entireSet
for i = 1:num_data
Ei = calEk(data,alphas,label,b,i);%计算误差
%此处的条件既是选取第一个变量的标准,首先考虑的是间隔边界(0<alpha<C)上的支持向量点中不满足KKT条件的点所对应的变量
%该条件困扰了我两天,实际上原来的写法过于虚伪,让人看不透摸不清,实际上写清楚了让人一看就明了。
if (label(i)*Ei<-0.001 && alphas(i)<C)||(label(i)*Ei>0.001 && alphas(i)>0)
%if (0<alphas(i) && alphas(i)<C && label(i)*Ei~=0)%写成这个形式要让alphas的初值大于零否则进不来循环体。
%选择下一个alphas
[j,Ej] = select(i,data,num_data,alphas,label,b,C,Ei,entireSet);
alpha_I_old = alphas(i);
alpha_J_old = alphas(j);
if label(i) ~= label(j)
L = max(0,alphas(j) - alphas(i));
H = min(C,C + alphas(j) - alphas(i));
else
L = max(0,alphas(j) + alphas(i) -C);
H = min(C,alphas(j) + alphas(i));
end
if L==H
continue;end
eta = 2*data(i,:)*data(j,:)‘- data(i,:)*...
data(i,:)‘ - data(j,:)*data(j,:)‘;
if eta >= 0
continue;end
alphas(j) = alphas(j) - label(j)*(Ei-Ej)/eta;
%限制范围
if alphas(j) > H
alphas(j) = H;
elseif alphas(j) < L
alphas(j) = L;
end
if abs(alphas(j) - alpha_J_old) < 1e-4
continue;end
alphas(i) = alphas(i) + label(i)*label(j)*(alpha_J_old-alphas(j));
b1 = b - Ei - label(i)*(alphas(i)-alpha_I_old)*data(i,:)*data(i,:)‘- label(j)*(alphas(j)-alpha_J_old)*data(i,:)*data(j,:)‘;
b2 = b - Ej - label(i)*(alphas(i)-alpha_I_old)*data(i,:)*data(j,:)‘- label(j)*(alphas(j)-alpha_J_old)*data(j,:)*data(j,:)‘;
if (alphas(i) > 0) && (alphas(i) < C)
b = b1;
elseif (alphas(j) > 0) && (alphas(j) < C)
b = b2;
else
b = (b1+b2)/2;
end
alpha_change = alpha_change + 1;
end
end
iter = iter + 1;
% --------------部分遍历(alphas=0~C)的样本--------------------------
else
index = find(alphas>0 & alphas < C);
for ii = 1:length(index)
i = index(ii);
Ei = calEk(data,alphas,label,b,i);%计算误差
if (label(i)*Ei<-0.001 && alphas(i)<C)||...
(label(i)*Ei>0.001 && alphas(i)>0)
%选择下一个样本
[j,Ej] = select(i,data,num_data,alphas,label,b,C,Ei,entireSet);
alpha_I_old = alphas(i);
alpha_J_old = alphas(j);
if label(i) ~= label(j)
L = max(0,alphas(j) - alphas(i));
H = min(C,C + alphas(j) - alphas(i));
else
L = max(0,alphas(j) + alphas(i) -C);
H = min(C,alphas(j) + alphas(i));
end
if L==H
continue;end
eta = 2*data(i,:)*data(j,:)‘- data(i,:)*...
data(i,:)‘ - data(j,:)*data(j,:)‘;
if eta >= 0
continue;end
alphas(j) = alphas(j) - label(j)*(Ei-Ej)/eta;
%限制范围
if alphas(j) > H
alphas(j) = H;
elseif alphas(j) < L
alphas(j) = L;
end
if abs(alphas(j) - alpha_J_old) < 1e-4
continue;end
alphas(i) = alphas(i) + label(i)*...
label(j)*(alpha_J_old-alphas(j));
b1 = b - Ei - label(i)*(alphas(i)-alpha_I_old)*...
data(i,:)*data(i,:)‘- label(j)*...
(alphas(j)-alpha_J_old)*data(i,:)*data(j,:)‘;
b2 = b - Ej - label(i)*(alphas(i)-alpha_I_old)*...
data(i,:)*data(j,:)‘- label(j)*...
(alphas(j)-alpha_J_old)*data(j,:)*data(j,:)‘;
if (alphas(i) > 0) && (alphas(i) < C)
b = b1;
elseif (alphas(j) > 0) && (alphas(j) < C)
b = b2;
else
b = (b1+b2)/2;
end
alpha_change = alpha_change + 1;
end
end
iter = iter + 1;
end
% --------------------------------
if entireSet %第一次全遍历了,下一次就变成部分遍历
entireSet = 0;
elseif alpha_change == 0
%如果部分遍历所有都没有找到需要交换的alpha,再改为全遍历
entireSet = 1;
end
disp([‘iter ================== ‘,num2str(iter)]);
end
% 计算权值W
W = (alphas.*label)‘*data;
%记录支持向量位置
index_sup = find(alphas ~= 0);
%计算预测结果
predict = (alphas.*label)‘*(data*data‘) + b;
predict = sign(predict);
% 显示结果
figure;
index1 = find(predict==-1);
data1 = (data(index1,:))‘;
plot(data1(1,:),data1(2,:),‘+r‘);
hold on
index2 = find(predict==1);
data2 = (data(index2,:))‘;
plot(data2(1,:),data2(2,:),‘*‘);
hold on
dataw = (data(index_sup,:))‘;
plot(dataw(1,:),dataw(2,:),‘og‘,‘LineWidth‘,2);
% 画出分界面,以及b上下正负1的分界面
hold on
k = -W(1)/W(2);
x = -1.2:0.1:1.2;
y = k*x + b;
plot(x,y,x,y-1,‘r--‘,x,y+1,‘r--‘);
title([‘松弛变量范围C = ‘,num2str(C)]);
function Ek = calEk(data,alphas,label,b,k) pre_Li = (alphas.*label)‘*(data*data(k,:)‘) + b; Ek = pre_Li - label(k);
function [J,Ej] = select(i,data,num_data,alphas,label,b,C,Ei,choose)
maxDeltaE = 0;maxJ = -1;
if choose == 1 %全遍历---随机选择alphas
j = randi(num_data ,1);
if j == i
temp = 1;
while temp
j = randi(num_data,1);
if j ~= i
temp = 0;
end
end
end
J = j;
Ej = calEk(data,alphas,label,b,J);
else %部分遍历--启发式的选择alphas
index = find(alphas>0 & alphas < C);
for k = 1:length(index)
if i == index(k)
continue;
end
temp_e = calEk(data,alphas,label,b,k);
deltaE = abs(Ei - temp_e); %选择与Ei误差最大的alphas
if deltaE > maxDeltaE
maxJ = k;
maxDeltaE = deltaE;
Ej = temp_e;
end
end
J = maxJ;
end
原文:http://www.cnblogs.com/lengyue365/p/5044899.html