Maximum Subarray II
Given an array of integers, find two non-overlapping subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
For given [1, 3, -1, 2, -1, 2]
, the two subarrays are [1, 3]
and [2, -1, 2]
or [1, 3, -1, 2]
and [2]
, they both have the largest sum 7
.
The subarray should contain at least one number
Can you do it in time complexity O(n) ?
与买卖股票的思路一样,从两边分别计算最大子串
public class Solution { /** * @param nums: A list of integers * @return: An integer denotes the sum of max two non-overlapping subarrays */ public int maxTwoSubArrays(ArrayList<Integer> nums) { // write your code if(nums.size()==0 || nums==null) return 0; int n=nums.size(); int result=Integer.MIN_VALUE;; int[] preSum=new int[n]; int sum1=0; int max=Integer.MIN_VALUE; for(int i=0;i<n;i++) { sum1=Math.max(sum1+nums.get(i),nums.get(i)); max=Math.max(max,sum1); preSum[i]=max; } max=Integer.MIN_VALUE; int sum2=0; for(int i=n-1;i>=0;i--) { if(i<n-1) { result=Math.max(result,preSum[i]+max); } sum2=Math.max(sum2+nums.get(i),nums.get(i)); max=Math.max(max,sum2); } return result; } }
[lintcode medium]Maximum Subarray II
原文:http://www.cnblogs.com/kittyamin/p/5055928.html