首页 > 编程语言 > 详细

Python: scikit-image 图像的基本操作

时间:2015-12-20 14:41:51      阅读:611      评论:0      收藏:0      [点我收藏+]

这个用例说明Python 的图像基本运算

import numpy as np
from skimage import data
import matplotlib.pyplot as plt

camera = data.camera()
# 将图像前面10行的值赋为0
camera[:10] = 0
# 寻找图像中像素值小于87的像素点
mask = camera < 87
# 将找到的点赋值为255
camera[mask] = 255
# 建立索引
inds_x = np.arange(len(camera))
inds_y = (4 * inds_x) % len(camera)
# 对应索引的像素赋值为0
camera[inds_x, inds_y] = 0

# 获取图像的行数(高),列数(宽)
l_x, l_y = camera.shape[0], camera.shape[1]
# 建立网格坐标索引
X, Y = np.ogrid[:l_x, :l_y]
# 生成圆形的网格坐标
outer_disk_mask = (X - l_x / 2)**2 + (Y - l_y / 2)**2 > (l_x / 2)**2
# 对网格坐标赋0
camera[outer_disk_mask] = 0

# 建立figure的尺寸比例
plt.figure(figsize=(4, 4))
# 显示图像
plt.imshow(camera, cmap=‘gray‘, interpolation=‘nearest‘)
# 关掉图像的坐标
plt.axis(‘off‘)
plt.show()

参考来源: http://scikit-image.org/docs/dev/auto_examples/

技术分享

Python: scikit-image 图像的基本操作

原文:http://blog.csdn.net/matrix_space/article/details/49786193

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!