你的公司接到了一批订单。订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件。公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别。一件产品必须完整地由一名员工制造,不可以由某名员工制造一部分配件后,再转交给另外一名员工继续进行制造。
我们用一个由0和1组成的m*n的矩阵A来描述每名员工能够制造哪些产品。矩阵的行和列分别被编号为1~m和1~n,Ai,j为1表示员工i能够制造产品j,为0表示员工i不能制造产品j。
如
果公司分配了过多工作给一名员工,这名员工会变得不高兴。我们用愤怒值来描述某名员工的心情状态。愤怒值越高,表示这名员工心情越不爽,愤怒值越低,表示
这名员工心情越愉快。员工的愤怒值与他被安排制造的产品数量存在某函数关系,鉴于员工们的承受能力不同,不同员工之间的函数关系也是有所区别的。
对于员工i,他的愤怒值与产品数量之间的函数是一个Si+1段的分段函数。当他制造第1~Ti,1件产品时,每件产品会使他的愤怒值增加Wi,1,当他制造第Ti,1+1~Ti,2件产品时,每件产品会使他的愤怒值增加Wi,2……为描述方便,设Ti,0=0,Ti,si+1=+∞,那么当他制造第Ti,j-1+1~Ti,j件产品时,每件产品会使他的愤怒值增加Wi,j, 1≤j≤Si+1。
你的任务是制定出一个产品的分配方案,使得订单条件被满足,并且所有员工的愤怒值之和最小。由于我们并不想使用Special Judge,也为了使选手有更多的时间研究其他两道题目,你只需要输出最小的愤怒值之和就可以了。
第一行包含两个正整数m和n,分别表示员工数量和产品的种类数;
第二行包含n 个正整数,第i个正整数为Ci;
以下m行每行n 个整数描述矩阵A;
下面m个部分,第i部分描述员工i的愤怒值与产品数量的函数关系。每一部分由三行组成:第一行为一个非负整数Si,第二行包含Si个正整数,其中第j个正整数为Ti,j,如果Si=0那么输入将不会留空行(即这一部分只由两行组成)。第三行包含Si+1个正整数,其中第j个正整数为Wi,j。
1 #include<cstdio>
2 #include<cstring>
3 #include<queue>
4 #include<vector>
5 #define FOR(a,b,c) for(int a=(b);a<(c);a++)
6 using namespace std;
7
8 typedef long long LL;
9 const int maxn = 1000+10;
10 const LL INF = 1e9;
11
12 struct Edge{ int u,v,cap,flow,cost;
13 };
14
15 struct MCMF {
16 int n,m,s,t;
17 int inq[maxn],a[maxn],d[maxn],p[maxn];
18 vector<int> G[maxn];
19 vector<Edge> es;
20
21 void init(int n) {
22 this->n=n;
23 es.clear();
24 for(int i=0;i<n;i++) G[i].clear();
25 }
26 void AddEdge(int u,int v,int cap,int cost) {
27 es.push_back((Edge){u,v,cap,0,cost});
28 es.push_back((Edge){v,u,0,0,-cost});
29 m=es.size();
30 G[u].push_back(m-2);
31 G[v].push_back(m-1);
32 }
33
34 bool SPFA(int s,int t,int& flow,LL& cost) {
35 for(int i=0;i<n;i++) d[i]=INF;
36 memset(inq,0,sizeof(inq));
37 d[s]=0; inq[s]=1; p[s]=0; a[s]=INF;
38 queue<int> q; q.push(s);
39 while(!q.empty()) {
40 int u=q.front(); q.pop(); inq[u]=0;
41 for(int i=0;i<G[u].size();i++) {
42 Edge& e=es[G[u][i]];
43 int v=e.v;
44 if(e.cap>e.flow && d[v]>d[u]+e.cost) {
45 d[v]=d[u]+e.cost;
46 p[v]=G[u][i];
47 a[v]=min(a[u],e.cap-e.flow); //min(a[u],..)
48 if(!inq[v]) { inq[v]=1; q.push(v);
49 }
50 }
51 }
52 }
53 if(d[t]==INF) return false;
54 flow+=a[t] , cost+= (LL) a[t]*d[t];
55 for(int x=t; x!=s; x=es[p[x]].u) {
56 es[p[x]].flow+=a[t]; es[p[x]^1].flow-=a[t];
57 }
58 return true;
59 }
60 int Mincost(int s,int t,LL& cost) {
61 int flow=0; cost=0;
62 while(SPFA(s,t,flow,cost)) ;
63 return flow;
64 }
65 } mc;
66
67 int n,m;
68 int t[maxn];
69
70 int main() {
71 //freopen("in.in","r",stdin);
72 //freopen("out.out","w",stdout);
73 scanf("%d%d",&m,&n);
74 mc.init(m+n+2);
75 int S=m+n,T=S+1;
76 int c;
77 FOR(i,0,n) {
78 scanf("%d",&c);
79 mc.AddEdge(m+i,T,c,0);
80 }
81 FOR(i,0,m) FOR(j,0,n) {
82 scanf("%d",&c);
83 if(c) mc.AddEdge(i,j+m,INF,0);
84 }
85 FOR(i,0,m) {
86 scanf("%d",&c);
87 FOR(j,0,c) scanf("%d",&t[j]); t[c]=INF;
88 int w,tt;
89 FOR(j,0,c+1) {
90 scanf("%d",&w);
91 tt = j==0? t[0]:t[j]-t[j-1];
92 mc.AddEdge(S,i,tt,w);
93 }
94 }
95 LL cost;
96 mc.Mincost(S,T,cost);
97 printf("%lld\n",cost);
98 return 0;
99 }