日志信息如下所示:
1.1.1.1 - - [21/Jul/2014:10:00:00 -0800] "GET /majihua/article/284234 HTTP/1.1" 200 1234
1.1.1.1 - - [21/Jul/2014:10:00:00 -0800] "GET /majihua/article/284234 HTTP/1.1" 200 2000
1.1.1.1 - - [21/Jul/2014:10:00:00 -0800] "GET /majihua/article/284234 HTTP/1.1" 401 100
从左到右,各字段分别表示的意思分别是Client请求IP地址、Client(这里为-)、用户名(这里为-)、请求时间、请求方式(这里是GET)、请求的资源、传输协议(这里是HTTP/1.1)、HTTP响应码(200表示正常响应)、响应内容的大小
Spark处理:
1.代码
类1:LogAnalyzer
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import scala.Tuple2;
import java.io.Serializable;
import java.util.Comparator;
import java.util.List;
/**
* Main Class
*/
public class LogAnalyzer {
public static void main(String[] args) {
//local D:/my.log
if (args.length < 1) {
System.out.println("必须输入程序运行模式名称和要处理的日志文件路径!");
System.exit(-1);
}
// 通过SparkConf来创建Spark程序运行的上下文,一个SparkContext就相当于运行的一个APP
// AppName是程序的名字,Master是运行模式,local为本地单线程模式,
// Master最好不要写死到程序中,关于Spark部署模式,详见注解1
SparkConf conf = new SparkConf().setAppName("Log Analyzer").setMaster(args[0]);
JavaSparkContext sc = new JavaSparkContext(conf);
//将日志文件读取到RDD中
String logFile = args[1];
JavaRDD<String> logLines = sc.textFile(logFile);
//由于textFile是以行为最小单位进行操作的,所以这里是把每一行日志信息存储到一个ApacheAccessLog类中
//ApacheAccessLog::parseFromLogLine是JDK8新增的类调用方法的新特性,感觉挺酷的
//我们使用accessLogs RDD,主要用于(1)统计响应内容均值、最小值、最大值(2)响应码的种类及个数
//(3)请求次数超过10次的Client IP地址(4)请求的资源Top10
// 因为使用这个accessLogs RDD 4次,所以我们调用cache方法缓存到内存中
JavaRDD<ApacheAccessLog> accessLogs =
logLines.map(ApacheAccessLog::parseFromLogLine).cache();
System.out.println("日志处理结果如下所示:");
//(1)统计响应内容均值、最小值、最大值
//对于每个类ApacheAccessLog调用getContentSize方法
JavaRDD<Long> contentSizes =
accessLogs.map(ApacheAccessLog::getContentSize).cache();
System.out.println(String.format("(1)响应内容大小平均值: %s, 最小值: %s, 最大值: %s",
contentSizes.reduce(SUM_REDUCER) / contentSizes.count(),
contentSizes.min(Comparator.naturalOrder()),
contentSizes.max(Comparator.naturalOrder())));
// (2)响应码的种类及个数
List<Tuple2<Integer, Long>> responseCodeToCount =
accessLogs.mapToPair(log -> new Tuple2<>(log.getResponseCode(), 1L))
.reduceByKey(SUM_REDUCER)
.take(100);
System.out.println(String.format("(2)响应码种类及个数: %s", responseCodeToCount));
// (3)请求次数超过10次的Client IP地址
List<String> ipAddresses =
accessLogs.mapToPair(log -> new Tuple2<>(log.getIpAddress(), 1L))
.reduceByKey(SUM_REDUCER)
.filter(tuple -> tuple._2() > 10)
.map(Tuple2::_1)
.take(100);
System.out.println(String.format("(3)请求次数超过10次的IP地址: %s", ipAddresses));
// (4)请求的资源Top10
List<Tuple2<String, Long>> topEndpoints = accessLogs
.mapToPair(log -> new Tuple2<>(log.getEndpoint(), 1L))
.reduceByKey(SUM_REDUCER)
.top(10, new ValueComparator<>(Comparator.<Long>naturalOrder()));
System.out.println(String.format("(4)请求的资源Top10: %s", topEndpoints));
// 停止应用程序
sc.stop();
}
//定义一个累加功能的函数
private static Function2<Long, Long, Long> SUM_REDUCER = (a, b) -> a + b;
//定义一个类比较器
private static class ValueComparator<K, V>
implements Comparator<Tuple2<K, V>>, Serializable {
private Comparator<V> comparator;
public ValueComparator(Comparator<V> comparator) {
this.comparator = comparator;
}
@Override
public int compare(Tuple2<K, V> o1, Tuple2<K, V> o2) {
return comparator.compare(o1._2(), o2._2());
}
}
}
类2:ApacheAccessLog
/**
* 每个类代表日志文件的每一行
*/
public class ApacheAccessLog implements Serializable {
private static final Logger logger = Logger.getLogger("Access");
private String ipAddress;
private String clientIdentd;
private String userID;
private String dateTimeString;
private String method;
private String endpoint;
private String protocol;
private int responseCode;
private long contentSize;
private ApacheAccessLog(String ipAddress, String clientIdentd, String userID,
String dateTime, String method, String endpoint,
String protocol, String responseCode,
String contentSize) {
this.ipAddress = ipAddress;
this.clientIdentd = clientIdentd;
this.userID = userID;
this.dateTimeString = dateTime;
this.method = method;
this.endpoint = endpoint;
this.protocol = protocol;
this.responseCode = Integer.parseInt(responseCode);
this.contentSize = Long.parseLong(contentSize);
}
public String getIpAddress() {
return ipAddress;
}
public String getClientIdentd() {
return clientIdentd;
}
public String getUserID() {
return userID;
}
public String getDateTimeString() {
return dateTimeString;
}
public String getMethod() {
return method;
}
public String getEndpoint() {
return endpoint;
}
public String getProtocol() {
return protocol;
}
public int getResponseCode() {
return responseCode;
}
public long getContentSize() {
return contentSize;
}
public void setIpAddress(String ipAddress) {
this.ipAddress = ipAddress;
}
public void setClientIdentd(String clientIdentd) {
this.clientIdentd = clientIdentd;
}
public void setUserID(String userID) {
this.userID = userID;
}
public void setDateTimeString(String dateTimeString) {
this.dateTimeString = dateTimeString;
}
public void setMethod(String method) {
this.method = method;
}
public void setEndpoint(String endpoint) {
this.endpoint = endpoint;
}
public void setProtocol(String protocol) {
this.protocol = protocol;
}
public void setResponseCode(int responseCode) {
this.responseCode = responseCode;
}
public void setContentSize(long contentSize) {
this.contentSize = contentSize;
}
// 日志文件示例:
// 127.0.0.1 - - [21/Jul/2014:9:55:27 -0800] "GET /home.html HTTP/1.1" 200 2048
private static final String LOG_ENTRY_PATTERN =
// Client请求IP地址、Client(这里为-)、用户名(这里为-)、请求时间、请求方式(这里是GET)、请求的资源、传输协议(这里是HTTP/1.1)、HTTP响应码(200表示正常响应)、响应内容的大小
"^(\\S+) (\\S+) (\\S+) \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\S+) (\\S+) (\\S+)\" (\\d{3}) (\\d+)";
private static final Pattern PATTERN = Pattern.compile(LOG_ENTRY_PATTERN);
public static ApacheAccessLog parseFromLogLine(String logline) {
Matcher m = PATTERN.matcher(logline);
if (!m.find()) {
logger.log(Level.ALL, "不能解析日志文件" + logline);
throw new RuntimeException("解析日志文件出错");
}
return new ApacheAccessLog(m.group(1), m.group(2), m.group(3), m.group(4),
m.group(5), m.group(6), m.group(7), m.group(8), m.group(9));
}
@Override public String toString() {
return String.format("%s %s %s [%s] \"%s %s %s\" %s %s",
ipAddress, clientIdentd, userID, dateTimeString, method, endpoint,
protocol, responseCode, contentSize);
}
}
运行结果:
2.注解
注解1:Spark部署模式分为单机和集群模式
2.1单机模式,一般适用于本地调试程序
这个比较好理解,local代表一个线程运行该程序,local[n]代表n个线程运行该程序
使用方法I)在程序中通过.setMaster(“local”)直接写死II)jar运行时通过--master=local
2.2集群模式
根据Driver程序的位置,集群模式分为Client和Cluster两种,根据所使用的资源管理器集群模式又分为Standalone、YARN、Mesos、Amazon EC2
a)Standalone Spark自己实现的一个简单的集群运行模式
启动命令:./bin/spark-submit --master=spark://IP:PORT ...
b)YARN模式
Yarn-cluster启动命令:./bin/spark-submit --master yarn-cluster ...
Yarn-client启动命令:./bin/spark-submit --master yarn-client ...
c)Mesos模式
启动命令:./bin/spark-submit --master mesos://host:5050 ...
原文:http://www.cnblogs.com/yourarebest/p/5097317.html