首页 > 编程语言 > 详细

swift通过摄像头读取每一帧的图片,并且做识别做人脸识别

时间:2016-01-06 17:38:38      阅读:178      评论:0      收藏:0      [点我收藏+]

最近帮别人做一个项目,主要是使用摄像头做人脸识别

github地址:https://github.com/qugang/AVCaptureVideoTemplate

要使用IOS的摄像头,需要使用AVFoundation 库,库里面的东西我就不介绍。

启动摄像头需要使用AVCaptureSession 类。

然后得到摄像头传输的每一帧数据,需要使用AVCaptureVideoDataOutputSampleBufferDelegate 委托。

首先在viewDidLoad 里添加找摄像头设备的代码,找到摄像头设备以后,开启摄像头

1
2
3
4
5
6
7
8
9
10
11
12
13
captureSession.sessionPreset = AVCaptureSessionPresetLow
let devices = AVCaptureDevice.devices()
for device in devices {
  if (device.hasMediaType(AVMediaTypeVideo)) {
    if (device.position == AVCaptureDevicePosition.Front) {
      captureDevice = device as?AVCaptureDevice
      if captureDevice != nil {
        println("Capture Device found")
        beginSession()
      }
    }
  }
}

 

beginSession,开启摄像头:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
func beginSession() {
  var err : NSError? = nil
  captureSession.addInput(AVCaptureDeviceInput(device: captureDevice, error: &err))
  let output = AVCaptureVideoDataOutput()
  let cameraQueue = dispatch_queue_create("cameraQueue", DISPATCH_QUEUE_SERIAL)
  output.setSampleBufferDelegate(self, queue: cameraQueue)
  output.videoSettings = [kCVPixelBufferPixelFormatTypeKey: kCVPixelFormatType_32BGRA]
  captureSession.addOutput(output)
  if err != nil {
    println("error: \(err?.localizedDescription)")
  }
  previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
  previewLayer?.videoGravity = "AVLayerVideoGravityResizeAspect"
  previewLayer?.frame = self.view.bounds
  self.view.layer.addSublayer(previewLayer)
  captureSession.startRunning()
}

 

开启以后,实现captureOutput 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func captureOutput(captureOutput: AVCaptureOutput!, didOutputSampleBuffer sampleBuffer: CMSampleBuffer!, fromConnection connection: AVCaptureConnection!) {
  if(self.isStart)
  {
    let resultImage = sampleBufferToImage(sampleBuffer)
    let context = CIContext(options:[kCIContextUseSoftwareRenderer:true])
    let detecotr = CIDetector(ofType:CIDetectorTypeFace,  context:context, options:[CIDetectorAccuracy: CIDetectorAccuracyHigh])
    let ciImage = CIImage(image: resultImage)
    let results:NSArray = detecotr.featuresInImage(ciImage,options: ["CIDetectorImageOrientation" : 6])
    for r in results {
      let face:CIFaceFeature = r as! CIFaceFeature;
      let faceImage = UIImage(CGImage: context.createCGImage(ciImage, fromRect: face.bounds),scale: 1.0, orientation: .Right)
      NSLog("Face found at (%f,%f) of dimensions %fx%f", face.bounds.origin.x, face.bounds.origin.y,pickUIImager.frame.origin.x, pickUIImager.frame.origin.y)
      dispatch_async(dispatch_get_main_queue()) {
        if (self.isStart)
        {
          self.dismissViewControllerAnimated(true, completion: nil)
          self.didReceiveMemoryWarning()
          self.callBack!(face: faceImage!)
        }
        self.isStart = false
      }
    }
  }
}

 

在每一帧图片上使用CIDetector 得到人脸,CIDetector 还可以得到眨眼,与微笑的人脸,如果要详细使用去官方查看API

上面就是关键代码,设置了有2秒的延迟,2秒之后开始人脸检测。

全部代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
//
//  ViewController.swift
//  AVSessionTest
//
//  Created by qugang on 15/7/8.
//  Copyright (c) 2015年 qugang. All rights reserved.
//
 
import UIKit
import AVFoundation
class AVCaptireVideoPicController: UIViewController,AVCaptureVideoDataOutputSampleBufferDelegate {
  var callBack :((face: UIImage) ->())?
  let captureSession = AVCaptureSession()
  var captureDevice : AVCaptureDevice?
  var previewLayer : AVCaptureVideoPreviewLayer?
  var pickUIImager : UIImageView = UIImageView(image: UIImage(named: "pick_bg"))
  var line : UIImageView = UIImageView(image: UIImage(named: "line"))
  var timer : NSTimer!
  var upOrdown = true
  var isStart = false
  override func viewDidLoad() {
    super.viewDidLoad()
    captureSession.sessionPreset = AVCaptureSessionPresetLow
    let devices = AVCaptureDevice.devices()
    for device in devices {
      if (device.hasMediaType(AVMediaTypeVideo)) {
        if (device.position == AVCaptureDevicePosition.Front) {
          captureDevice = device as?AVCaptureDevice
          if captureDevice != nil {
            println("Capture Device found")
            beginSession()
          }
        }
      }
    }
    pickUIImager.frame = CGRect(x: self.view.bounds.width / 2 - 100, y: self.view.bounds.height / 2 - 100,width: 200,height: 200)
    line.frame = CGRect(x: self.view.bounds.width / 2 - 100, y: self.view.bounds.height / 2 - 100, width: 200, height: 2)
    self.view.addSubview(pickUIImager)
    self.view.addSubview(line)
    timer =  NSTimer.scheduledTimerWithTimeInterval(0.01, target: self, selector: "animationSate", userInfo: nil, repeats: true)
     
    NSTimer.scheduledTimerWithTimeInterval(2, target: self, selector: "isStartTrue", userInfo: nil, repeats: false)
  }
  func isStartTrue(){
    self.isStart = true
  }
  override func didReceiveMemoryWarning(){
    super.didReceiveMemoryWarning()
    captureSession.stopRunning()
  }
   
  func animationSate(){
    if upOrdown {
      if (line.frame.origin.y >= pickUIImager.frame.origin.y + 200)
      {
        upOrdown = false
      }
      else
      {
        line.frame.origin.y += 2
      }
    } else {
      if (line.frame.origin.y <= pickUIImager.frame.origin.y)
      {
        upOrdown = true
      }
      else
      {
        line.frame.origin.y -= 2
      }
    }
  }
  func beginSession() {
    var err : NSError? = nil
    captureSession.addInput(AVCaptureDeviceInput(device: captureDevice, error: &err))
    let output = AVCaptureVideoDataOutput()
    let cameraQueue = dispatch_queue_create("cameraQueue", DISPATCH_QUEUE_SERIAL)
    output.setSampleBufferDelegate(self, queue: cameraQueue)
    output.videoSettings = [kCVPixelBufferPixelFormatTypeKey: kCVPixelFormatType_32BGRA]
    captureSession.addOutput(output)
    if err != nil {
      println("error: \(err?.localizedDescription)")
    }
    previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
    previewLayer?.videoGravity = "AVLayerVideoGravityResizeAspect"
    previewLayer?.frame = self.view.bounds
    self.view.layer.addSublayer(previewLayer)
    captureSession.startRunning()
  }
  func captureOutput(captureOutput: AVCaptureOutput!, didOutputSampleBuffer sampleBuffer: CMSampleBuffer!, fromConnection connection: AVCaptureConnection!) {
    if(self.isStart)
    {
      let resultImage = sampleBufferToImage(sampleBuffer)
      let context = CIContext(options:[kCIContextUseSoftwareRenderer:true])
      let detecotr = CIDetector(ofType:CIDetectorTypeFace,  context:context, options:[CIDetectorAccuracy: CIDetectorAccuracyHigh])
      let ciImage = CIImage(image: resultImage)
      let results:NSArray = detecotr.featuresInImage(ciImage,options: ["CIDetectorImageOrientation" : 6])
      for r in results {
        let face:CIFaceFeature = r as! CIFaceFeature;
        let faceImage = UIImage(CGImage: context.createCGImage(ciImage, fromRect: face.bounds),scale: 1.0, orientation: .Right)
        NSLog("Face found at (%f,%f) of dimensions %fx%f", face.bounds.origin.x, face.bounds.origin.y,pickUIImager.frame.origin.x, pickUIImager.frame.origin.y)
        dispatch_async(dispatch_get_main_queue()) {
          if (self.isStart)
          {
            self.dismissViewControllerAnimated(true, completion: nil)
            self.didReceiveMemoryWarning()
            self.callBack!(face: faceImage!)
          }
          self.isStart = false
        }
      }
    }
  }
  private func sampleBufferToImage(sampleBuffer: CMSampleBuffer!) -> UIImage {
    let imageBuffer: CVImageBufferRef = CMSampleBufferGetImageBuffer(sampleBuffer)
    CVPixelBufferLockBaseAddress(imageBuffer, 0)
    let baseAddress = CVPixelBufferGetBaseAddressOfPlane(imageBuffer, 0)
    let bytesPerRow = CVPixelBufferGetBytesPerRow(imageBuffer)
    let width = CVPixelBufferGetWidth(imageBuffer)
    let height = CVPixelBufferGetHeight(imageBuffer)
    let colorSpace: CGColorSpaceRef = CGColorSpaceCreateDeviceRGB()
    let bitsPerCompornent = 8
    var bitmapInfo = CGBitmapInfo((CGBitmapInfo.ByteOrder32Little.rawValue | CGImageAlphaInfo.PremultipliedFirst.rawValue) as UInt32)
    let newContext = CGBitmapContextCreate(baseAddress, width, height, bitsPerCompornent, bytesPerRow, colorSpace, bitmapInfo) as CGContextRef
    let imageRef: CGImageRef = CGBitmapContextCreateImage(newContext)
    let resultImage = UIImage(CGImage: imageRef, scale: 1.0, orientation: UIImageOrientation.Right)!
    return resultImage
  }
  func imageResize (imageObj:UIImage, sizeChange:CGSize)-> UIImage{
    let hasAlpha = false
    let scale: CGFloat = 0.0
     
    UIGraphicsBeginImageContextWithOptions(sizeChange, !hasAlpha, scale)
    imageObj.drawInRect(CGRect(origin: CGPointZero, size: sizeChange))
    let scaledImage = UIGraphicsGetImageFromCurrentImageContext()
    return scaledImage
  }
}

swift通过摄像头读取每一帧的图片,并且做识别做人脸识别

原文:http://www.cnblogs.com/Free-Thinker/p/5106330.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!