转自:http://blog.csdn.net/bluishglc/article/details/9380087
我们知道hadoop将数据给到map进行处理前会使用InputFormat对数据进行两方面的预处理:
最常见的FormatInput就是TextInputFormat,在split的读取方面,它是将给到的Split按行读取,以行首字节在文件中的偏移做key,以行数据做value传给map函数处理,这部分的逻辑是由它所创建并使用的RecordReader:LineRecordReader封装和实现的.关于这部分逻辑,在一开始接触hadoop时会有一个常见的疑问:如果一个行被切分到两个split里(这几乎是一定会发生的情况),TextInputFormat是如何处理的?如果是生硬地把一行切割到两个split里,是对数据的一种破坏,可能会影响数据分析的正确性(比如word count就是一个例子).搞清楚这个问题还是需要从源码入手了解TextInputFormat的详细工作方式,这里简单地梳理记录如下(本文参考的是hadoop1.1.2的源码):
1. LineRecordReader会创建一个org.apache.hadoop.util.LineReader实例,并依赖这个LineReader的readLine方法来读取一行记录,具体可参考org.apache.hadoop.mapred.LineRecordReader.next(LongWritable, Text),Line 176),那么关键的逻辑就在这个readLine方法里了,下面是添加了额外中文注释的该方法源码.这个方法主要的逻辑归纳起来是3点:
2. 按照readLine的上述行为,在遇到跨split的行时,会到下一个split继续读取数据直至行尾,那么下一个split怎么判定开头的一行有没有被上一个split的LineRecordReader读取过从而避免漏读或重复读取开头一行呢?这方面LineRecordReader使用了一个简单而巧妙的方法:既然无法断定每一个split开始的一行是独立的一行还是被切断的一行的一部分,那就跳过每个split的开始一行(当然要除第一个split之外),从第二行开始读取,然后在到达split的结尾端时总是再多读一行,这样数据既能接续起来又避开了断行带来的麻烦.以下是相关的源码:
在LineRecordReader的构造函数org.apache.hadoop.mapred.LineRecordReader.LineRecordReader(Configuration, FileSplit) 108到113行确定start位置时,明确注明::会特别地忽略掉第一行!
相应地,在LineRecordReader判断是否还有下一行的方法:org.apache.hadoop.mapred.LineRecordReader.next(LongWritable, Text) 170到173行中,while使用的判定条件是:当前位置小于或等于split的结尾位置,也就说:当当前以处于split的结尾位置上时,while依然会执行一次,这一次读到显然已经是下一个split的开始行了!
小结:
至此,跨split的行读取的逻辑就完备了.如果引申地来看,这是map-reduce前期数据切分的一个普遍性问题,即不管我们用什么方式切分和读取一份大数据中的小部分,包括我们在实现自己的InputFormat时,都会面临在切分处数据时的连续性解析问题. 对此我们应该深刻地认识到:split最直接的现实作用是取出大数据中的一小部分给mapper处理,但这只是一种"逻辑"上的,"宏观"上的切分,在"微观"上,在split的首尾切分处,为了确保数据连续性,跨越split接续并拼接数据也是完全正当和合理的.
Hadoop源码解析之: TextInputFormat如何处理跨split的行
原文:http://www.cnblogs.com/cxzdy/p/5111774.html