首页 > 其他 > 详细

Triangle

时间:2016-01-11 12:11:27      阅读:171      评论:0      收藏:0      [点我收藏+]

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

int minimumTotal(int** triangle, int triangleRowSize, int *triangleColSizes) {
    //add bottom to top
    if(triangleRowSize == 0)
        return 0;
    //memorize a triangleRowSize array 
    int n = triangleRowSize - 1;
    // go over row
    for(int layer = triangleRowSize - 2; layer >= 0; layer--){
        //go over col
        for(int i = 0; i <= layer; i++){
            triangle[n][i] = (triangle[n][i] > triangle[n][i + 1] ? triangle[n][i + 1] : triangle[n][i] )+ triangle[layer][i];
        }
    }     
    return triangle[n][0];
}
  • 把下面的值一层层的往上加:从大往小不用分开头结尾,更加方便

Triangle

原文:http://www.cnblogs.com/dylqt/p/5120600.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!