自从开始从事浏览器内核开发工作以来,已经写过不少跟渲染相关的文章。但是一直想写一篇像 How Browsers Work 类似,能够系统,完整地阐述浏览器的渲染引擎是如何工作的,它是如何对网页渲染性能进行优化的文章,却一直因为畏惧所需要花费的时间和精力,迟迟无法动笔。不管如何,现在终于鼓起勇气来写了,希望自己能够在一个月之内完成吧…
文章预计包括的主要内容如下 —
首先明确文中关于渲染的定义,浏览器内核引擎通常又被称为网页渲染引擎,但是这里的渲染实际上是一个泛指,广义的渲染,它包括了浏览器内核所有的主要工作 - 加载,解析,排版,绘制等等。而在本文里面的渲染,指的是跟绘制相关的部分,也就是浏览器是如何将排版后的结果最终显示在屏幕上的这一过程。如果读者希望先对浏览器内核引擎,特别是 WebKit 有一个大概的了解,How Browsers Work,How WebKit Work,WebKit for Developers 可以提供不错的入门指引。
其次,本文主要描述 WebKit 引擎的实现,不过因为 Blink 实际上从 WebKit 分支出来的时间并不长,两者在渲染整体架构上还是基本一致的,所以文中不会明确区分这两者。
最后,希望这篇文章能够给从事浏览器内核开发,特别是渲染引擎开发的开发者一个能够快速入门的指引,并给前端开发者优化网页渲染性能提供足够的知识和帮助。
当浏览器通过网络或者本地文件系统加载一个 HTML 文件,并对它进行解析完毕后,内核就会生成它最重要的数据结构 - DOM 树。DOM 树上每一个节点都对应着网页里面的每一个元素,并且网页也可以通过 JavaScript 操作这棵 DOM 树,动态改变它的结构。但是 DOM 树本身并不能直接用于排版和渲染,内核还会生成另外一棵树 - Render 树,Render 树上的每一个节点 - RenderObject,跟 DOM 树上的节点几乎是一一对应的,当一个可见的 DOM 节点被添加到 DOM 树上时,内核就会为它生成对应的 RenderOject 添加到 Render 树上。
图片来自 How WebKit Work
Render 树是浏览器排版引擎的主要作业对象,排版引擎根据 DOM 树和 CSS 样式表的样式定义,按照预定的排版规则确定了 Render 树最后的结构,包括其中每一个 RenderObject 的大小和位置,而一棵经过排版的 Render 树,则是浏览器渲染引擎的主要输入,读者可以认为,Render 树是衔接浏览器排版引擎和渲染引擎之间的桥梁,它是排版引擎的输出,渲染引擎的输入。
图片来自 How WebKit Work
不过浏览器渲染引擎并不是直接使用 Render 树进行绘制,为了方便处理 Positioning(定位),Clipping(裁剪),Overflow-scroll(页內滚动),CSS Transform/Opacity/Animation/Filter,Mask or Reflection,Z-indexing(Z排序)等,浏览器需要生成另外一棵树 - Layer 树。渲染引擎会为一些特定的 RenderObject 生成对应的 RenderLayer,而这些特定的 RenderObject 跟对应的 RenderLayer 就是直属的关系,相应的,它们的子节点如果没有对应的 RenderLayer,就从属于父节点的 RenderLayer。最终,每一个 RenderObject 都会直接或者间接地从属于一个 RenderLayer。
RenderObject 生成 RenderLayer 的条件,来自 GPU Accelerated Compositing in Chrome
- It’s the root object for the page
- It has explicit CSS position properties (relative, absolute or a transform)
- It is transparent
- Has overflow, an alpha mask or reflection
- Has a CSS filter
- Corresponds to canvas element that has a 3D (WebGL) context or an accelerated 2D context
- Corresponds to a video element
浏览器渲染引擎遍历 Layer 树,访问每一个 RenderLayer,再遍历从属于这个 RenderLayer 的 RenderObject,将每一个 RenderObject 绘制出来。读者可以认为,Layer 树决定了网页绘制的层次顺序,而从属于 RenderLayer 的 RenderObject 决定了这个 Layer 的内容,所有的 RenderLayer 和 RenderObject 一起就决定了网页在屏幕上最终呈现出来的内容。
软件渲染模式下,浏览器绘制 RenderLayer 和 RenderObject 的顺序,来自 GPU Accelerated Compositing in Chrome
In the software path, the page is rendered by sequentially painting all the RenderLayers, from back to front. The RenderLayer hierarchy is traversed recursively starting from the root and the bulk of the work is done in RenderLayer::paintLayer() which performs the following basic steps (the list of steps is simplified here for clarity):
- Determines whether the layer intersects the damage rect for an early out.
- Recursively paints the layers below this one by calling paintLayer() for the layers in the negZOrderList.
- Asks RenderObjects associated with this RenderLayer to paint themselves.
- This is done by recursing down the RenderObject tree starting with the RenderObject which created the layer. Traversal stops whenever a RenderObject associated with a different RenderLayer is found.
- Recursively paints the layers above this one by calling paintLayer() for the layers in the posZOrderList.
In this mode RenderObjects paint themselves into the destination bitmap by issuing draw calls into a single shared GraphicsContext (implemented in Chrome via Skia).
图片来自 [UC 浏览器 9.7 Android版],中间是一个 WebView,上方是标题栏和工具栏
浏览器本身并不能直接改变屏幕的像素输出,它需要通过系统本身的 GUI Toolkit。所以,一般来说浏览器会将一个要显示的网页包装成一个 UI 组件,通常叫做 WebView,然后通过将 WebView 放置于应用的 UI 界面上,从而将网页显示在屏幕上。
一些 GUI Toolkit,比如 Android,默认的情况下 UI 组件没有自己独立的位图缓存,构成 UI 界面的所有 UI 组件都直接绘制在当前的窗口缓存上,所以 WebView 每次绘制,就相当于将它在可见区域内的 RenderLayer/RenderObject 逐个绘制到窗口缓存上。上述的渲染方式有一个很严重的问题,用户拖动网页或者触发一个惯性滚动时,网页滑动的渲染性能会十分糟糕。这是因为即使网页只移动一个像素,整个 WebView 都需要重新绘制,而要绘制一个 WebView 大小的区域的 RenderLayer/RenderObject,耗时通常都比较长,对于一些复杂的桌面版网页,在移动设备上绘制一次的耗时有可能需要上百毫秒,而要达到60 FPS 的流畅度,每一帧绘制的时间就不能超过16.7毫秒,所以在这种渲染模式下,要获得流畅的网页滑屏效果,显然是不可能的,而网页滑屏的流畅程度,又是用户对浏览器渲染性能的最直观和最重要的感受。
要提升网页滑屏的性能,一个简单的做法就是让 WebView 本身持有一块独立的缓存,而 WebView 的绘制就分成了两步 1) 根据需要更新内部缓存,将网页内容绘制到内部缓存里面 2) 将内部缓存拷贝到窗口缓存上。第一步我们通常称为绘制(Paint)或者光栅化(Rasterization),它将一些绘图指令转换成真正的像素颜色值,而第二步我们一般称为混合(Composite),它负责缓存的拷贝,同时还可能包括位移(Translation),缩放(Scale),Rotation(旋转),Alpha 混合等操作。咋一看,渲染变得比原来更复杂,还多了一步操作,但实际上,混合的耗时通常远远小于网页内容绘制的耗时,后者即使在移动设备上一般也就在几个毫秒以内,而大部分时候,在第一步里面,我们只需要绘制一块很小的区域而不需要绘制一个完整 WebView 大小的区域,这样就有效地减少了绘制这一步的开销。以网页滚动为例子,每次滚动实际上只需要绘制新进入 WebView 可见区域的部分,如果向上滚动了10个像素,我们需要绘制的区域大小就是10 x Width of WebView,比起原来需要绘制整个 WebView 大小区域的网页内容当然要快的多了。
进一步来说,浏览器还可以使用多线程的渲染架构,将网页内容绘制到缓存的操作放到另外一个独立的线程(绘制线程),而原来线程对 WebView 的绘制就只剩下缓存的拷贝(混合线程),绘制线程跟混合线程之间可以使用同步,部分同步,完全异步等作业模式,让浏览器可以在性能与效果之间根据需要进行选择,比如说异步模式下,当浏览器需要将 WebView 缓存拷贝到窗口缓存,但是需要更新的部分还没有来得及绘制时,浏览器可以在还未及时更新的部分绘制一个背景色或者空白,这样虽然渲染效果有所下降,但是保证了每一帧窗口更新的间隔都在理想的范围内。并且浏览器还可以为 WebView 创建一个更大的缓存,超过 WebView本身的大小,让我们可以缓存更多的网页内容,可以预先绘制不可见的区域,这样就可以有效减少异步模式下出现空白的状况,在性能和效果之间取得更好的平衡。
How Browsers Work: Behind the scenes of modern web browsers
How WebKit Work
WebKit for Developers
GPU Accelerated Compositing in Chrome
Web
Page Rendering and Accelerated Compositing
How Rendering Work (in WebKit and Blink),布布扣,bubuko.com
How Rendering Work (in WebKit and Blink)
原文:http://blog.csdn.net/rogeryi/article/details/23686609