Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Case 1:
14 1 4
Case 2:
7 1 6
思路:
最近开始复习下DP,这是最经典的最大子段和问题了,具体的方法没什么好赘述的,有两点要注意下:
(1)所有数都是负数这种情况应该单独拿出来处理一下,除此之外只要有一个非负数都可以当做正常的情况来处理
(2)记录开始和结束位置的问题,首先考虑的是问题是什么时候去更新b和e,通过观察发现是在每次ans被更新的时候和每次tm清零的时候;其次要考虑的是更新的正确性,一开始我只是在ans更新的时候设置了一个e = i;然后在tm<0的时候设置了一个 b = e = i+1;而这就会出现错误的情况:当已经确定了某个连续子段的最大值时,如果tm的值<0了,那之前的位置记录就消失了。对于这个问题我突然想到了一种方法,就是建立一种概念————当前最大值的开始结束位置和历史最大值的开始结束位置,然后再在适时的地方做好b和e的更新工作,这样就能顺利的AC。通过这点我发现一个程序终究是解决问题的工具,只要概念上的东西是正确的,然后程序对思想的表达没有偏差,那么问题就能够得到解决。这是一个进步的过程,我之所以这样想,是因为我终于意识到成功的程序是人操控程序,而非程序来限制人的思维。
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
int n;
int c = 0;
int T;
cin>>T;
while(T--)
{
c++;
int ans = 0;
int tm = 0;
int b,e,b_m,e_m;
int b_n,e_n;
b = e = 1;
b_n = e_n = 1;
cin>>n;
int cnt = 0;
int m = -1008;
for(int i = 1;i <= n;i++)
{
int t;
cin>>t;
if(t < 0) {
cnt++;
if(t > m) {
m = t;
b_m = e_m = i;
}
}
tm += t;
if(tm < 0) {
tm = 0;
b_n = e_n = i+1;
continue;
}
if(tm >= ans) {
ans = tm;
//问题只剩下该如何处置b和e
e = i;
e_n = i;
b = b_n;
}
}
//判断负数的个数
if(cnt == n) {
b = b_m;
e = e_m;
ans = m;
}
//输出最后的结果
if(T == 0) {
cout<<"Case "<<c<<‘:‘<<endl;
cout<<ans<<‘ ‘<<b<<‘ ‘<<e<<endl;
}
else {
cout<<"Case "<<c<<‘:‘<<endl;
cout<<ans<<‘ ‘<<b<<‘ ‘<<e<<endl<<endl;
}
}
return 0;
}