首页 > 其他 > 详细

斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

时间:2016-01-24 16:49:53      阅读:258      评论:0      收藏:0      [点我收藏+]

斯坦福ML公开课笔记15

我们在上一篇笔记中讲到了PCA(主成分分析)。

PCA是一种直接的降维方法。通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果。

本文继续PCA的话题,包含PCA的一个应用——LSI(Latent Semantic Indexing, 隐含语义索引)和PCA的一个实现——SVD(Singular Value Decomposition,神秘值分解)。

在SVD和LSI结束之后。关于PCA的内容就告一段落。

视频的后半段開始讲无监督学习的一种——ICA(Independent Component Analysis, 独立成分分析)。

本笔记的13-15部分的pdf已上传csdn资源中,下载请猛击屠龙宝刀。下载就送

技术分享

技术分享

技术分享

技术分享

技术分享

斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

原文:http://www.cnblogs.com/bhlsheji/p/5155301.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!