首页 > 其他 > 详细

Project Euler 110:Diophantine reciprocals II 丢番图倒数II

时间:2016-01-24 16:54:13      阅读:202      评论:0      收藏:0      [点我收藏+]

Diophantine reciprocals II

In the following equation x, y, and n are positive integers.

技术分享

 

For n = 4 there are exactly three distinct solutions:

 

技术分享

It can be verified that when n = 1260 there are 113 distinct solutions and this is the least value of n for which the total number of distinct solutions exceeds one hundred.

What is the least value of n for which the number of distinct solutions exceeds four million?

NOTE: This problem is a much more difficult version of Problem 108 and as it is well beyond the limitations of a brute force approach it requires a clever implementation.


丢番图倒数II

在如下方程中,x、y、n均为正整数。

技术分享

 

对于n = 4,上述方程恰好有3个不同的解:

技术分享

 

可以验证当n = 1260时,恰好有113种不同的解,这也是不同的解的总数超过一百种的最小n值。

不同的解的总数超过四百万种的最小n值是多少?

注意:这是第108题一个极其困难的版本,而且远远超过暴力解法的能力范围,因此需要更加聪明的手段。

 解题

先占坑

 待完善

Project Euler 110:Diophantine reciprocals II 丢番图倒数II

原文:http://www.cnblogs.com/theskulls/p/5155229.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!