首页 > 编程语言 > 详细

基于Hadoop 2.6.0运行数字排序的计算

时间:2016-01-25 19:26:56      阅读:253      评论:0      收藏:0      [点我收藏+]

  上个博客写了Hadoop2.6.0的环境部署,下面写一个简单的基于数字排序的小程序,真正实现分布式的计算,原理就是对多个文件中的数字进行排序,每个文件中每个数字占一行,排序原理是按行读取后分块进行排序,最后对块进行合并,通俗来说就是首先对小于100的数据范围进行排序,然后对100-1000之间的数据进行排序,最后对大于1000的数据进行排序,最终这3块合成之后也一定是按顺序排列的,代码如下:

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.Partitioner;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class Sort {

    public static class Map extends
            Mapper<Object, Text, IntWritable, IntWritable> {

        private static IntWritable data = new IntWritable();

        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();

            data.set(Integer.parseInt(line));

            context.write(data, new IntWritable(1));

        }

    }

    public static class Reduce extends
            Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {

        private static IntWritable linenum = new IntWritable(1);

        public void reduce(IntWritable key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {

            for (IntWritable val : values) {

                context.write(linenum, key);

                linenum = new IntWritable(linenum.get() + 1);
            }

        }
    }

    public static class Partition extends Partitioner<IntWritable, IntWritable> {

        @Override
        public int getPartition(IntWritable key, IntWritable value,
                int numPartitions) {
            int MaxNumber = 65223;
            int bound = MaxNumber / numPartitions + 1;
            int keynumber = key.get();
            for (int i = 0; i < numPartitions; i++) {
                if (keynumber < bound * i && keynumber >= bound * (i - 1))
                    return i - 1;
            }
            return 0;
        }
    }

    /**
     * @param args
     */

    public static void main(String[] args) throws Exception {
        // TODO Auto-generated method stub
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage WordCount <int> <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "Sort");
        job.setJarByClass(Sort.class);
        job.setMapperClass(Map.class);
        job.setPartitionerClass(Partition.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

}

 

  将源文件上传到服务器后,进行编译,hadoop2.6.0的编译方式和之前的hadoop1.2.1不太一样,这次需要引入3个jar文件分别是:

  share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar

  share/hadoop/common/hadoop-common-2.6.0.jar

  share/hadoop/common/lib/commons-cli-1.2.jar

  编译命令这里为:

javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar Sort.java

  如果忽略要警告可以添加-Xlint:deprecation参数进行编译:

javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar -Xlint:deprecation Sort.java

  编译成功之后打包操作:

jar -cvf sort.jar *.class

  打成sort.jar之后建立几个文件,格式就如下图所示:

  技术分享

  然后上传到HDFS文件系统之后,可以用hadoop来跑一下:

hadoop jar sort.jar Sort /sort /sortoutput

  注意:输出目录,不能使用原来的,如果原来存在一个目录,不管是空的还是非空的,那么hadoop都会报错,所以应该指定一个不存在的目录,让hadoop去新建他

  等运行完毕,然后查看输出就行了:

hdfs dfs -cat /sortoutput/*

  技术分享

  这样就简单的使用hadoop平台以分布式的方式运行了java应用

 

  

 

基于Hadoop 2.6.0运行数字排序的计算

原文:http://www.cnblogs.com/freeweb/p/5158231.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!