原题:
http://acm.hdu.edu.cn/showproblem.php?pid=1573
这个题目真是坑爹啊- =首先说M个正整数,结果测试数据里面就有0 - =莫非0成了正整数?
扩展中国剩余定理解这道题目很多模板也不对- =造呢。。也不知道到底可不可以从0开始- =坑爹的题目。。
如果时间急别在这里干着急了- =坑死人
#include <iostream> #include <cstdio> #include <cstring> using namespace std; #define lln long long int lln a[11]; lln b[11]; lln gcd( lln a, lln b) { return b == 0 ? a : gcd(b, a % b); } void ace() { int n, m; int t; int i, j; int lcm; bool flag; int num; cin >> t; while (t--) { memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); cin >> n >> m; lcm = 1; flag = false; num = 0; for (i = 0; i < m; i++) { cin >> a[i]; lcm = lcm * a[i] / gcd(lcm, a[i]); } for (i = 0; i < m; i++) cin >> b[i]; for (i = 1; i <= lcm && i <= n; i++) //find the minium num 坑爹的地方- - i不能从0开始 { for (j = 0; j < m; j++) if (i % a[j] != b[j]) break; if (j == m) { flag = true; break; } } if (flag) { int temp = n % lcm; if (temp >= i) i = n / lcm + 1; else i = n / lcm; printf("%d\n", i); // while (i <= n) // { // i += lcm; // num++; // } // cout << num << endl; } else printf("0\n"); } } int main() { ace(); return 0; }
/** 中国剩余定理(不互质)模板 */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef __int64 int64; int64 Mod; int64 gcd(int64 a, int64 b) { if(b==0) return a; return gcd(b,a%b); } int64 Extend_Euclid(int64 a, int64 b, int64&x, int64& y) { if(b==0) { x=1,y=0; return a; } int64 d = Extend_Euclid(b,a%b,x,y); int64 t = x; x = y; y = t - a/b*y; return d; } //a在模n乘法下的逆元,没有则返回-1 int64 inv(int64 a, int64 n) { int64 x,y; int64 t = Extend_Euclid(a,n,x,y); if(t != 1) return -1; return (x%n+n)%n; } //将两个方程合并为一个 bool merge(int64 a1, int64 n1, int64 a2, int64 n2, int64& a3, int64& n3) { int64 d = gcd(n1,n2); int64 c = a2-a1; if(c%d) return false; c = (c%n2+n2)%n2; c /= d; n1 /= d; n2 /= d; c *= inv(n1,n2); c %= n2; c *= n1*d; c += a1; n3 = n1*n2*d; a3 = (c%n3+n3)%n3; return true; } //求模线性方程组x=ai(mod ni),ni可以不互质 int64 China_Reminder2(int len, int64* a, int64* n) { int64 a1=a[0],n1=n[0]; int64 a2,n2; for(int i = 1; i < len; i++) { int64 aa,nn; a2 = a[i],n2=n[i]; if(!merge(a1,n1,a2,n2,aa,nn)) return -1; a1 = aa; n1 = nn; } Mod = n1; return (a1%n1+n1)%n1; } int64 a[1000],b[1000]; int main() { int i; int k; while(scanf("%d",&k)!=EOF) { for(i = 0; i < k; i++) scanf("%I64d %I64d",&a[i],&b[i]); printf("%I64d\n",China_Reminder2(k,b,a)); } return 0; }
原文:http://blog.csdn.net/svitter/article/details/23735099