首页 > 其他 > 详细

关于极限证明方法的专题讨论

时间:2014-04-18 16:18:15      阅读:348      评论:0      收藏:0      [点我收藏+]

定义法

$\bf命题1:$设$\left\{ {{a_n}} \right\}$为单调增加的数列,则

limbubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣nbubuko.com,布布扣=Supbubuko.com,布布扣k1bubuko.com,布布扣{abubuko.com,布布扣kbubuko.com,布布扣}bubuko.com,布布扣

证明:记
M=Supbubuko.com,布布扣k1bubuko.com,布布扣{abubuko.com,布布扣kbubuko.com,布布扣}bubuko.com,布布扣

$\left( 1 \right)$当$M < + \infty $时,由上确界的定义知,对任给$\varepsilon > 0$,存在${a_N}$,使得
M?ε<abubuko.com,布布扣Nbubuko.com,布布扣Mbubuko.com,布布扣

由于$\left\{ {{a_n}} \right\}$为单调增加数列,则当$n > N$时,有
M?ε<abubuko.com,布布扣Nbubuko.com,布布扣abubuko.com,布布扣nbubuko.com,布布扣M<M+εbubuko.com,布布扣

从而由数列极限的定义即证

$\left( 2 \right)$当$M = + \infty $时,由上确界的定义知,对任给$\varepsilon > 0$,存在${a_N}$,使得

abubuko.com,布布扣Nbubuko.com,布布扣>εbubuko.com,布布扣

由于$\left\{ {{a_n}} \right\}$为单调增加数列,则当$n > N$时,有
abubuko.com,布布扣nbubuko.com,布布扣abubuko.com,布布扣Nbubuko.com,布布扣>εbubuko.com,布布扣

从而由数列极限的定义即证

夹逼原理

$\bf命题1:$任何实数都是某个有理数列的极限

证明:设$A$为实数,若$A$为有理数,则令

abubuko.com,布布扣nbubuko.com,布布扣=A,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

即可,若$A$为无理数,则令
abubuko.com,布布扣nbubuko.com,布布扣=[nA]bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

其中${\left[ x \right]}$表示不超过$x$的最大整数,因此${a_n}$都是有理数.而$A$为无理数,则
nA?1<[nA]<nA,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣
A?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣<abubuko.com,布布扣nbubuko.com,布布扣<A,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣
从而由夹逼原理即证

$\bf命题2:$设$f\left( x \right)$在$\left( {0,1} \right)$上单调,且无界广义积分$\int_0^1 {f\left( x \right)dx} $收敛,则

limbubuko.com,布布扣nbubuko.com,布布扣f(1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)+f(2bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)+?+f(n?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣f(x)dxbubuko.com,布布扣

证明:我们不妨只讨论$f\left( x \right)$单调增加的情况,则有不等式

bubuko.com,布布扣1?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣f(x)dxf(1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)+f(2bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)+?+f(n?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣f(x)dxbubuko.com,布布扣

令$n \to \infty $,则由夹逼原理即证

关于极限证明方法的专题讨论,布布扣,bubuko.com

关于极限证明方法的专题讨论

原文:http://www.cnblogs.com/ly142857/p/3672832.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!