武汉大学2014数学分析考研真题解答
一、(1)求积分
解:不妨设$t=\ln x\Rightarrow x={{e}^{t}},-\infty <t<0$
于是
而
于是
以此类推,既得
(2)求极限$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{(1-x)}^{3}}\sum\limits_{n=1}^{+\infty }{{{n}^{2}}{{x}^{n}}}$
解:不妨设$S(x)=\sum\limits_{n=1}^{+\infty }{{{n}^{2}}}{{x}^{n}}$
考虑到$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{n}^{2}}}{{{(n+1)}^{2}}}=1$,且$\sum\limits_{n=1}^{+\infty }{{{n}^{2}}}$和$\sum\limits_{n=1}^{+\infty }{{{(-1)}^{n}}}{{n}^{2}}$都发散
于是$S(x)=\sum\limits_{n=1}^{+\infty }{{{n}^{2}}}{{x}^{n}},x\in (-1,1)$
则$\frac{S(x)}{x}=\sum\limits_{n=1}^{+\infty }{{{n}^{2}}}{{x}^{n-1}}\Rightarrow \int_{0}^{x}{\frac{S(t)}{t}}dt=\sum\limits_{n=1}^{+\infty }{n}{{x}^{n}}$
设$g(x)=\int_{0}^{x}{\frac{S(t)}{t}dt\Rightarrow \frac{g(x)}{x}=\sum\limits_{n=1}^{+\infty }{n{{x}^{n-1}}}}\Rightarrow \int_{0}^{x}{\frac{g(t)}{t}}dt=\sum\limits_{n=1}^{+\infty }{{{x}^{n}}}=\frac{x}{1-x}$
于是$\frac{g(x)}{x}=[\frac{x}{1-x}]‘=\frac{1}{{{(1-x)}^{2}}}\Rightarrow g(x)=\frac{x}{{{(1-x)}^{2}}}\Rightarrow $
$\frac{S(x)}{x}=[\frac{x}{{{(1-x)}^{2}}}]‘=\frac{1+x}{{{(1-x)}^{3}}}\Rightarrow S(x)=\frac{x(1+x)}{{{(1-x)}^{3}}},x\in (-1,1)$
于是$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{(1-x)}^{3}}\sum\limits_{n=1}^{+\infty }{{{n}^{2}}{{x}^{n}}}=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,x(1+x)=2$
(3)
解:先求
由于
设
(4)求不定积分
解:由于
而
于是
(5)计算曲面积分:$\int_{C}{xyds}$,其中$C$为球面${{x}^{2}}+{{y}^{2}}+{{z}^{2}}=9$和平面$x+y+z=0$的交线
解:由于平面$x+y+z=0$过原点$(0,0,0)$,从而交线的半径为$3$,且交线关于$x,y,z$轮换对称
从而$\int_{C}{xyds}=\int_{C}{yzds}=\int_{C}{xzds}=\frac{1}{6}\int_{C}{2(xy+yz+xz)ds}$
而$2(xy+yz+xz)={{(x+y+z)}^{2}}-({{x}^{2}}+{{y}^{2}}+{{z}^{2}})$
于是
二、已知$f(x)$在$[-1,1]$内二阶可微,且$f(0)=0$,求证:存在$\xi \in [-1,1]$,使得$f‘‘(\xi )=3\int_{-1}^{1}{f(x)dx}$
证明:由于$f(x)$在$[-1,1]$内二阶可微,于是
$f(x)=f(0)+f‘(0)x+\frac{f‘‘(\xi )}{2!}{{x}^{2}}=f‘(0)x+\frac{1}{2}f‘‘(\xi ){{x}^{2}},0<\xi <x$
于是
即存在$\xi \in (0,x)\subset [-1,1]$,使得$f‘‘(\xi )=3\int_{-1}^{1}{f(x)dx}$
三、已知${{x}_{n}}=f(\frac{1}{{{n}^{2}}})+f(\frac{2}{{{n}^{2}}})+\cdots +f(\frac{n}{{{n}^{2}}}),n=1,2,\cdots $,其中$f(x)$在$x=0$的附近可导,且$f(0)=0,f‘(0)=1$,求证:$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}$存在,并求其值。
证明:由于$f(x)$在$x=0$附近可导,于是
$f(x)=f(0)+f‘(0)x+\alpha (x)x=x+\alpha (x)x$
其中$\alpha (x)$是关于$x$的函数,$\alpha (0)=0$且$\alpha (x)\to 0$,当$x\to 0$
于是$f(\frac{i}{{{n}^{2}}})=\frac{i}{{{n}^{2}}}+\alpha (\frac{i}{{{n}^{2}}})\cdot \frac{i}{{{n}^{2}}}\Rightarrow \sum\limits_{i=1}^{n}{f(\frac{i}{{{n}^{2}}})=\sum\limits_{i=1}^{n}{\frac{i}{{{n}^{2}}}+\sum\limits_{i=1}^{n}{\alpha (\frac{i}{{{n}^{2}}})}}}\cdot \frac{i}{{{n}^{2}}},i=1,2,\cdots ,n$
由
于是当$n>N$时,$\left| \sum\limits_{i=1}^{n}{\alpha (\frac{i}{{{n}^{2}}})}\cdot \frac{i}{{{n}^{2}}} \right|<\frac{\varepsilon }{2}(1+\frac{1}{n})$
于是$\underset{n\to +\infty }{\mathop{\lim }}\,\sup \sum\limits_{i=1}^{n}{\alpha (\frac{i}{{{n}^{2}}})}\cdot \frac{i}{{{n}^{2}}}\le \frac{\varepsilon }{2}$及$\underset{n\to +\infty }{\mathop{\lim }}\,\inf \sum\limits_{i=1}^{n}{\alpha (\frac{i}{{{n}^{2}}})}\cdot \frac{i}{{{n}^{2}}}\ge -\frac{\varepsilon }{2}$
由的任意性知:$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=\frac{1}{2}$,从而$\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}$存在
四、已知$\Omega $.是由方程$\left\{
解:由题可知:椭球面$\Omega $的方程为:$3{{x}^{2}}+{{y}^{2}}+3{{z}^{2}}=1$
由于$\iint_{\sum }{z(\lambda x+uy+vz)dS}=\iint_{\sum }{xzdydz+yzdzdx+{{z}^{2}}dxdy}$
取平面${{\sum }_{1}}:3{{x}^{2}}+{{y}^{2}}+3{{z}^{2}}=1,z=0$
于是$\iint_{{{\sum }_{1}}}{xzdydz+yzdzdx+{{z}^{2}}dxdy}=0$
于是$\iint_{\sum }{z(\lambda x+uy+vz)dS}=\iint_{\sum +{{\sum }_{1}}}{xzdydz+yzdzdx+{{z}^{2}}dxdy}$
令
由高斯公式可知:
$\iint_{\sum }{z(\lambda x+uy+vz)dS}=\iint_{\sum +{{\sum }_{1}}}{xzdydz+yzdzdx+{{z}^{2}}dxdy}=4\iiint_{V}{zdxdydz}$
于是令$x=\frac{1}{\sqrt{3}}R\sin \varphi \cos \theta ,y=R\sin \varphi \sin \theta ,z=\frac{1}{\sqrt{3}}R\cos \varphi $
其中$0\le R\le 1,0\le \theta \le 2\pi ,0\le \varphi \le \frac{\pi }{2},\left| J \right|=\frac{1}{3}{{R}^{2}}\sin \varphi $
于是
五、已知$z=f(x,y)$在区域$D$存在二阶连续偏导数,已知$=\left\{
解:由于$\left\{
$\Rightarrow {{u}_{x}}=1,{{u}_{y}}=2,{{v}_{x}}=1,{{v}_{z}}=a$
于是$\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial x}={{z}_{u}}+{{z}_{v}}$
$\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial y}=2{{z}_{u}}+a{{z}_{v}}$
于是$\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}=[\frac{\partial ({{z}_{u}})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial ({{z}_{u}})}{\partial v}\cdot \frac{\partial v}{\partial x}]+[\frac{\partial ({{z}_{v}})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial ({{z}_{v}})}{\partial v}\cdot \frac{\partial v}{\partial x}]={{z}_{uu}}+2{{z}_{uv}}+{{z}_{vv}}$
$\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=2[\frac{\partial ({{z}_{u}})}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial ({{z}_{v}})}{\partial v}\cdot \frac{\partial v}{\partial x}]+a[\frac{\partial ({{z}_{v}})}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial ({{z}_{v}})}{\partial v}\cdot \frac{\partial v}{\partial y}]=4{{z}_{uu}}+4a{{z}_{uv}}+{{a}^{2}}{{z}_{vv}}$
$\frac{{{\partial }^{2}}z}{\partial x\partial y}=[\frac{\partial ({{z}_{u}})}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial ({{z}_{u}})}{\partial v}\cdot \frac{\partial v}{\partial y}]+[\frac{\partial ({{z}_{v}})}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial ({{z}_{v}})}{\partial v}\cdot \frac{\partial v}{\partial y}]=2{{z}_{uu}}+(a+2){{z}_{uv}}+a{{z}_{vv}}$
由$2\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}+\frac{{{\partial }^{2}}z}{\partial x\partial y}-\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=0\Rightarrow (6-3a){{z}_{uv}}+(2+a-{{a}^{2}}){{z}_{vv}}=0$
于是令
$\left\{
$\Rightarrow a=-1$
即当$a=-1$时,$\frac{{{\partial }^{2}}z}{\partial u\partial v}=0$
六、已知$\alpha >-1$,求证$I=\int_{0}^{+\infty }{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx$收敛,并求$I$的值。
证明:由于$I=\int_{0}^{+\infty }{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx=\int_{0}^{1}{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx+\int_{1}^{+\infty }{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx={{I}_{1}}+{{I}_{2}}$
其中${{I}_{1}}=\int_{0}^{1}{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx,{{I}_{2}}=\int_{1}^{+\infty }{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx$
对于${{I}_{1}}$:考虑到$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{x}^{p}}\cdot \frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}dx=0,0<p<1$
于是${{I}_{1}}$在$\alpha >-1$时收敛
对于${{I}_{2}}$:考虑到$\alpha >-1$时,$\underset{x\to +\infty }{\mathop{\lim }}\,{{x}^{2}}\cdot \frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}=0$
于是${{I}_{2}}$在$\alpha >-1$时收敛
从而$I$在$\alpha >-1$时收敛
(2)不妨设$I(\alpha )=\int_{0}^{+\infty }{\frac{1-{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx,\alpha >-1$
于是$I‘(\alpha )=\int_{0}^{+\infty }{\frac{x{{e}^{-\alpha x}}}{x{{e}^{x}}}}dx=\int_{0}^{+\infty }{{{e}^{-(\alpha +1)x}}}dx=-\frac{1}{\alpha +1}{{e}^{-(\alpha +1)x}}|_{0}^{+\infty }=\frac{1}{\alpha +1},\alpha >-1$
且$I(0)=0$
于是$I(\alpha )=\int_{0}^{\alpha }{\frac{1}{t+1}dt=\ln (1+\alpha ),\alpha >-1}$
七、已知级数$\sum\limits_{n=1}^{+\infty }{\frac{{{n}^{n+2}}}{{{(nx+1)}^{n}}}}$,求证
(1) 该级数在$(1,+\infty )$上收敛
(2) 该级数在$(1,+\infty )$上非一致收敛,但是$f(x)=\sum\limits_{n=1}^{+\infty }{\frac{{{n}^{n+2}}}{{{(nx+1)}^{n}}}}$在$(1,+\infty )$上连续
证明:(1)用比较判别法考虑$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{n}^{n+4}}}{{{(nx+1)}^{n}}}$
由于$nx+1>nx\Rightarrow \frac{{{n}^{n+4}}}{{{(nx+1)}^{n}}}<\frac{{{n}^{4}}}{{{x}^{n}}}$
考虑到$x\in (1,+\infty )$时,$\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{n}^{4}}}{{{x}^{n}}}=0\Rightarrow \underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{n}^{n+4}}}{{{(nx+1)}^{n}}}=0$
从而由比较判别法知:该级数在$(1,+\infty )$上收敛;
(2)由于取${{x}_{n}}=\frac{n+1}{n}$,此时
于是该级数在$(1,+\infty )$上非一致收敛
另一方面 ,由于对任意的$[a,b]\subset (1,+\infty )$
此时$\frac{{{n}^{n+4}}}{{{(nx+1)}^{n}}}<\frac{{{n}^{4}}}{{{a}^{n}}}$,$a>1$
而$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{4}}}{{{a}^{n}}}=0$,则当$n$充分大时,有$\frac{{{n}^{2}}}{{{a}^{n}}}<\frac{1}{{{n}^{2}}}$
而
由$M$判别法可知,该级数在$[a,b]$上一致收敛
由$[a,b]$的任意性及开区间覆盖定理知:该级数在$(1,+\infty )$上内闭一致收敛
从而$f(x)=\sum\limits_{n=1}^{+\infty }{\frac{{{n}^{n+2}}}{{{(nx+1)}^{n}}}}$在$(1,+\infty )$上连续
武汉大学2014数学分析考研真题解答,布布扣,bubuko.com
原文:http://www.cnblogs.com/Colgatetoothpaste/p/3669925.html