分类是指分类器(classifier)根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类。分类被称为监督学习(supervised learning)。如果训练集的样本没有标注类别,那么就需要用到聚类。聚类是把相似的样本聚成一类,这种相似性通常以距离来度量。聚类被称为无监督学习(unspervised learning)。
k-means是聚类算法中常用的一种,其中k的含义是指有k个cluster。在k-means中,用质心表示cluster,如果一个样本属于某个cluster,则该样本距离这个cluster是最近的(相较于其余k-1质心)。
k-means算法流程如下:
选取初始k个质心(通常随机选取)
循环重复直至收敛
{ 对每个样本,计算出与k个质心距离最近的那个,将其归为距离最新质心所对应的cluster
重新计算质心,当质心不再变化即为收敛
}
数学表述:
代码参考[1,2],结果可视化请参考[2]
import numpy as np import scipy.spatial.distance as ssd import matplotlib.pyplot as plt def read_file(fn): raw_file=open(fn) dataSet=[] for raw_row in raw_file.readlines(): row=raw_row.strip().split(‘\t‘) dataSet.append((float(row[0]),float(row[1]))) return np.array(dataSet) def firstCentroids(k,dataSet): """create the first centroids""" num_columns=dataSet.shape[1] centroids=np.zeros((k,num_columns)) for j in range(num_columns): minJ=min(dataSet[:,j]) rangeJ=max(dataSet[:,j])-minJ for i in range(k): centroids[i,j]=minJ+rangeJ*np.random.uniform(0,1) return np.array(centroids) def kmeans(k,dataSet): num_rows,num_columns=dataSet.shape centroids=firstCentroids(k,dataSet) #store the cluster that the samples belong to clusterAssment=np.zeros((num_rows,2)) clusterChanged=True while clusterChanged: clusterChanged=False #find the closet centroid for i in range(num_rows): minDis=np.inf;minIndex=-1 for j in range(k): distance=ssd.euclidean(dataSet[i,:],centroids[j,:]) if distance<minDis: minDis=distance;minIndex=j if(clusterAssment[i,0]!=minIndex): clusterChanged=True clusterAssment[i,:]=minIndex,minDis**2 #update the centroid location for cent in range(k): ptsInCent=dataSet[np.nonzero(clusterAssment[:,0]==cent)[0]] centroids[cent,:]=np.mean(ptsInCent,axis=0) return centroids,clusterAssment
[1] Peter Harrington, machine learning in action.
[2] zouxy09, 机器学习算法与Python实践之(五)k均值聚类(k-means).
【数据挖掘】聚类之k-means,布布扣,bubuko.com
原文:http://blog.csdn.net/keyboardlabourer/article/details/24045789