首页 > 其他 > 详细

STM32F4XX中断方式通过IO模拟I2C总线

时间:2014-04-19 15:12:31      阅读:865      评论:0      收藏:0      [点我收藏+]

目前网上绝大部分IO模拟I2c总线的程序都是查询方式,浪费大量CPU周期用于循环等待,本文的程序使用定时器中断推动状态机来模拟I2C总线的操作,

中断方式使用,请定义回调函数,本程序将在读写完成或出错时自动调用回调函数

当然此程序也可以通过查询方式读写I2c总线,仅需查询IIC_BUSY.

i2c_sim.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#ifndef __I2C_SIM_H__
#define __I2C_SIM_H__
 
#include <stm32f4xx.h>
 
#define MAXFREQ 1000000
 
extern uint8_t I2C_Read7(uint8_t IIC, uint8_t device, uint8_t Addr, uint8_t *Buf, uint8_t Count);
 
extern uint8_t I2C_Read16(uint8_t IIC, uint8_t device, uint16_t Addr, uint8_t *Buf, uint8_t Count);
 
extern uint8_t I2C_WriteByte7(uint8_t IIC, uint8_t device, uint8_t Addr, uint8_t Data);
 
extern uint8_t I2C_Write16(uint8_t IIC, uint8_t device, uint16_t Addr, uint8_t *Buf, uint8_t Count);
 
extern void IIC_Init(uint8_t IIC, uint16_t MicroSecond);
 
extern void IIC_DeInit(uint8_t IIC);
 
extern void IIC_SetCallback(uint8_t IIC, void(*OnTx)(void), void(*OnRx)(void) ,void(*OnErr)(void));
 
 
#endif

  

 

i2c_sim.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#include "stm32f4xx_conf.h"
#include <string.h>
 
#define IIC_COUNT 2
 
#if (IIC_COUNT>3)
    Error! To many IIC
#endif
 
/*----------- I2C1 Device -----------*/
   
#define I2C1_SCL_GPIO_PORT         GPIOB      
#define I2C1_SCL_GPIO_CLK          RCC_AHB1Periph_GPIOB
#define I2C1_SCL_GPIO_PIN          GPIO_Pin_6
#define I2C1_SCL_GPIO_PINSOURCE    GPIO_PinSource6
   
#define I2C1_SDA_GPIO_PORT         GPIOB      
#define I2C1_SDA_GPIO_CLK          RCC_AHB1Periph_GPIOB
#define I2C1_SDA_GPIO_PIN          GPIO_Pin_7
#define I2C1_SDA_GPIO_PINSOURCE    GPIO_PinSource7
   
/*-----------I2C2 Device -----------*/
   
#define I2C2_SCL_GPIO_PORT         GPIOA      
#define I2C2_SCL_GPIO_CLK          RCC_AHB1Periph_GPIOA
#define I2C2_SCL_GPIO_PIN          GPIO_Pin_8
#define I2C2_SCL_GPIO_PINSOURCE    GPIO_PinSource8
 
#define I2C2_SDA_GPIO_PORT         GPIOC      
#define I2C2_SDA_GPIO_CLK          RCC_AHB1Periph_GPIOC
#define I2C2_SDA_GPIO_PIN          GPIO_Pin_9
#define I2C2_SDA_GPIO_PINSOURCE    GPIO_PinSource9 
 
/*-----------I2C3 Device -----------*/
   
#define I2C3_SCL_GPIO_PORT         GPIOH
#define I2C3_SCL_GPIO_CLK          RCC_AHB1Periph_GPIOH
#define I2C3_SCL_GPIO_PIN          GPIO_Pin_7
#define I2C3_SCL_GPIO_PINSOURCE    GPIO_PinSource7
   
#define I2C3_SDA_GPIO_PORT         GPIOH
#define I2C3_SDA_GPIO_CLK          RCC_AHB1Periph_GPIOH
#define I2C3_SDA_GPIO_PIN          GPIO_Pin_8
#define I2C3_SDA_GPIO_PINSOURCE    GPIO_PinSource8
   
  
GPIO_TypeDef* I2C_SCL_GPIO_PORT[3] = {I2C1_SCL_GPIO_PORT, I2C2_SCL_GPIO_PORT, I2C3_SCL_GPIO_PORT};
const uint16_t I2C_SCL_GPIO_PIN[3] = {I2C1_SCL_GPIO_PIN, I2C2_SCL_GPIO_PIN, I2C3_SCL_GPIO_PIN};
const uint32_t I2C_SCL_GPIO_CLK[3] = {I2C1_SCL_GPIO_CLK, I2C2_SCL_GPIO_CLK, I2C3_SCL_GPIO_CLK};
const uint16_t I2C_SCL_GPIO_PINSOURCE[3] = {I2C1_SCL_GPIO_PINSOURCE, I2C2_SCL_GPIO_PINSOURCE, I2C3_SCL_GPIO_PINSOURCE};
 
GPIO_TypeDef* I2C_SDA_GPIO_PORT[3] = {I2C1_SDA_GPIO_PORT,I2C2_SDA_GPIO_PORT,I2C3_SDA_GPIO_PORT};
const uint16_t I2C_SDA_GPIO_PIN[3] = {I2C1_SDA_GPIO_PIN,I2C2_SDA_GPIO_PIN,I2C3_SDA_GPIO_PIN};
const uint32_t I2C_SDA_GPIO_CLK[3] = {I2C1_SDA_GPIO_CLK,I2C2_SDA_GPIO_CLK,I2C3_SDA_GPIO_CLK};
const uint16_t I2C_SDA_GPIO_PINSOURCE[3] = {I2C1_SDA_GPIO_PINSOURCE,I2C2_SDA_GPIO_PINSOURCE,I2C3_SDA_GPIO_PINSOURCE};
 
TIM_TypeDef* Timer[3] = {TIM5, TIM6, TIM7};
const IRQn_Type TimerIRQ[3] = {TIM5_IRQn, TIM6_DAC_IRQn, TIM7_IRQn};
 
const uint32_t RCC_APB1Periph_TIM[3] ={RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7};
 
#define SDA_Clear(IIC) I2C_SDA_GPIO_PORT[IIC]->BSRRH=I2C_SDA_GPIO_PIN[IIC]
#define SDA_Set(IIC) I2C_SDA_GPIO_PORT[IIC]->BSRRL=I2C_SDA_GPIO_PIN[IIC]
 
#define SCL_Clear(IIC) I2C_SCL_GPIO_PORT[IIC]->BSRRH=I2C_SCL_GPIO_PIN[IIC]
#define SCL_Set(IIC) I2C_SCL_GPIO_PORT[IIC]->BSRRL=I2C_SCL_GPIO_PIN[IIC]
 
#define En_SDA_Input(IIC) I2C_SDA_GPIO_PORT[IIC]->MODER&=~(I2C_SDA_GPIO_PIN[IIC]<<I2C_SDA_GPIO_PINSOURCE[IIC])
#define En_SDA_Output(IIC) I2C_SDA_GPIO_PORT[IIC]->MODER|=(I2C_SDA_GPIO_PIN[IIC]<<I2C_SDA_GPIO_PINSOURCE[IIC])
 
#define SDA_Read(IIC) ((I2C_SDA_GPIO_PORT[IIC]->IDR&I2C_SDA_GPIO_PIN[IIC])!=0)?1:0
 
 
typedef struct {
    __IO uint8_t StartState;
    __IO uint8_t StopState;
    __IO int8_t ReadByteState;
    __IO uint8_t TransferByte;
    __IO uint8_t ReadStop;
    __IO uint8_t WriteByteState;
    __IO uint8_t WriteACK;
    __IO uint8_t Command;   //1-Read, 0=Write;
    __IO uint8_t Device;
    __IO uint32_t SubAddr;
    __IO uint8_t SubAddrLen;
    __IO uint8_t *TransferBuf;
    __IO uint16_t TransferCount;
    __IO uint8_t ReadState;
    __IO uint8_t WriteState;
     
    __IO uint8_t dat;
    __IO uint8_t bit;
    __IO    uint8_t IIC_BUSY;
    __IO uint8_t ERROR;
}   IIC_State;
 
static IIC_State iic_state[IIC_COUNT];
 
typedef struct {
    void(*OnTx)(void);
    void(*OnRx)(void);
    void(*OnErr)(void);
} IIC_Callback;
 
__IO IIC_Callback iic_callback[IIC_COUNT];
 
 
//#define SDA_Clear(IIC)    GPIOA->BSRRH=GPIO_Pin_2   //sda=0
//#define SDA_Set(IIC)    GPIOA->BSRRL=GPIO_Pin_2   //sda=1
//#define SCL_Clear(IIC)    GPIOA->BSRRH=GPIO_Pin_3
//#define SCL_Set(IIC)    GPIOA->BSRRL=GPIO_Pin_3
//
//#define En_SDA_Input(IIC) GPIOA->MODER|=GPIO_Mode_IN<<4;  //sda??
//#define En_SDA_Output(IIC)   GPIOA->MODER|=GPIO_Mode_OUT<<4;//sda??
//
 
 
#define IN            1
#define OUT           0
 
void __INLINE SetIicSdaDir(uint8_t IIC, uint8_t x) {
    if (x) En_SDA_Input(IIC);
         else En_SDA_Output(IIC);
}
 
void IIC_GPIOInit(uint8_t IIC)
  GPIO_InitTypeDef GPIO_InitStructure;
   
  /* Enable I2Cx SCL and SDA Pin Clock */
    RCC_AHB1PeriphClockCmd((I2C_SCL_GPIO_CLK[IIC] | I2C_SDA_GPIO_CLK[IIC]), ENABLE);
     
  /* Set GPIO frequency to 50MHz */
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
   
  /* Select Alternate function mode */
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//?????
   
  /* Select output Open Drain type */
  GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
   
  /* Disable internal Pull-up */
  GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;
   
  /* Initialize I2Cx SCL Pin */
  GPIO_InitStructure.GPIO_Pin = I2C_SCL_GPIO_PIN[IIC];
   
  GPIO_Init((GPIO_TypeDef*)I2C_SCL_GPIO_PORT[IIC], &GPIO_InitStructure);
   
  /* Initialize I2Cx SDA Pin */
  GPIO_InitStructure.GPIO_Pin = I2C_SDA_GPIO_PIN[IIC];
   
  GPIO_Init((GPIO_TypeDef*)I2C_SDA_GPIO_PORT[IIC], &GPIO_InitStructure);    
}
 
 
 
static void IIC_DelayTimer_Init(uint8_t IIC)
{
    NVIC_InitTypeDef NVIC_InitStructure;
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
    NVIC_InitStructure.NVIC_IRQChannel = TimerIRQ[IIC];
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0 ;
    NVIC_Init(&NVIC_InitStructure);
    memset((void *)&iic_state[IIC], 0, sizeof(IIC_State));
    memset((void *)&iic_callback[IIC], 0, sizeof(IIC_Callback));
}
 
static void IIC_DelayTimer_DeInit(uint8_t IIC)
{
    NVIC_InitTypeDef NVIC_InitStructure;
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);
    NVIC_InitStructure.NVIC_IRQChannel = TimerIRQ[IIC];
    NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0 ;
    NVIC_Init(&NVIC_InitStructure);
    TIM_Cmd(Timer[IIC], DISABLE);
    memset(&iic_state[IIC], 0, sizeof(IIC_State));
}
 
static void IIC_SetDelay(uint8_t IIC, uint16_t MicroSecond)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    RCC_ClocksTypeDef rccClocks;
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM[IIC],ENABLE);
     
    RCC_GetClocksFreq(&rccClocks);
     
    TIM_DeInit(Timer[IIC]);
    TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;
    if (Timer[IIC]==TIM2||Timer[IIC]==TIM3||Timer[IIC]==TIM4||Timer[IIC]==TIM5||Timer[IIC]==TIM6||Timer[IIC]==TIM7||
        Timer[IIC]==TIM12||Timer[IIC]==TIM13||Timer[IIC]==TIM14) TIM_TimeBaseStructure.TIM_Prescaler=rccClocks.PCLK1_Frequency*2/1000000;
        else TIM_TimeBaseStructure.TIM_Prescaler=rccClocks.PCLK2_Frequency*2/1000000;
    TIM_TimeBaseStructure.TIM_ClockDivision=0;
    TIM_TimeBaseStructure.TIM_Period=MicroSecond;
    TIM_TimeBaseInit(Timer[IIC], &TIM_TimeBaseStructure);
     
    TIM_ClearFlag(Timer[IIC], TIM_FLAG_Update);
     
    TIM_ITConfig(Timer[IIC],TIM_FLAG_Update, ENABLE);
}
 
void IIC_Init(uint8_t IIC, uint16_t MicroSecond)
{  
    IIC_GPIOInit(IIC);
    SDA_Set(IIC);
    SCL_Set(IIC);  
    IIC_DelayTimer_Init(IIC);
    IIC_SetDelay(IIC, MicroSecond);             
}
#define p iic_state[IIC]
#define q iic_callback[IIC]
 
void IIC_SetCallback(uint8_t IIC, void(*OnTx)(void), void(*OnRx)(void) ,void(*OnErr)(void))
{
        q.OnErr=OnErr;
        q.OnTx=OnTx;
        q.OnRx=OnRx;
}
 
void IIC_DeInit(uint8_t IIC)
{  
    IIC_DelayTimer_DeInit(IIC);         
}
 
 
 
static uint8_t IIC_StartStateMachine(uint8_t IIC)
{
    switch(p.StartState) {
        case 0:
            SDA_Set(IIC);
            SCL_Set(IIC);
            p.StartState++;
            break;
        case 1:
            SDA_Clear(IIC);
            //SoftDelay(0);
            p.StartState++;
            break;
        case 2:
            SCL_Clear(IIC);
            p.StartState=0;
            break;
    }
    return p.StartState;
}  
 
static uint8_t IIC_StopStateMachine(uint8_t IIC)
{
    switch(p.StopState) {
        case 0:
            SCL_Set(IIC);
            SDA_Clear(IIC);
            //SoftDelay(1);
            p.StopState++;
            break;
        case 1:
            SDA_Set(IIC);
            p.StopState=0;
            break;
    }
    return p.StopState;
}
 
static uint8_t IIC_ReadByteStateMachine(uint8_t IIC)
{
    switch(p.ReadByteState) {
        case 0:
                SetIicSdaDir(IIC, IN);
                p.bit=0;
                p.ReadByteState++;
                break;
        case 1:
                p.dat <<= 1;
                SCL_Set(IIC);
                p.ReadByteState++;
                break;
        case 2:
                if(SDA_Read(IIC))
                {
                        p.dat |= 1;
                }
                SCL_Clear(IIC);
                p.bit++;
                if (p.bit==8) p.ReadByteState++;
                else {
                    p.ReadByteState--;
                    break;
                }
        case 3:
                p.TransferByte=p.dat;
                SetIicSdaDir(IIC, OUT);
                if (p.ReadStop) SDA_Set(IIC); else SDA_Clear(IIC);     // ReadStop = 0; ask, ReadStop = 1,stop
                p.ReadByteState++;
                break;
        case 4:
                SCL_Set(IIC);
                p.ReadByteState++;
                break;
        case 5:
                SCL_Clear(IIC);
                p.ReadByteState++;
        case 6:
                p.ReadByteState=0;
                break;
    }
    return p.ReadByteState;
}
             
static uint8_t IIC_WriteByteStateMachine(uint8_t IIC)
{
    switch(p.WriteByteState) {
        case 0:
                p.dat=p.TransferByte;
                p.bit=8;
                p.WriteByteState++;
        case 1:
                if(p.dat & 0x80)
                {
                        SDA_Set(IIC);
                }
                else
                {
                        SDA_Clear(IIC);
                }
                p.WriteByteState++;
                break;
        case 2:
                SCL_Set(IIC);
                p.WriteByteState++;
                break;
        case 3:
                p.dat <<= 1;
                SCL_Clear(IIC);
                p.bit--;
                if (p.bit) {
                    p.WriteByteState=1;
                    break;
                }
                else p.WriteByteState++;
        case 4:
            SetIicSdaDir(IIC, IN);
            p.WriteByteState++;
            break;
        case 5:
            SCL_Set(IIC);
            p.WriteByteState++;
            break;
        case 6:
            p.WriteACK = SDA_Read(IIC);
            SCL_Clear(IIC);
            SetIicSdaDir(IIC, OUT);
            p.WriteByteState++;
            break;
        case 7:
            p.WriteByteState=0;
            break;
    }
    return p.WriteByteState;
}
 
static uint8_t IIC_ReadStateMachine(uint8_t IIC)
{
    switch(p.ReadState) {
        case 0:
                p.ReadState++;
        case 1:    
                if (IIC_StartStateMachine(IIC)==0) p.ReadState++;
                break;
        case 2:
                p.TransferByte=p.Device;
                p.ReadState++;
        case 3:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.ReadState=14;     //Stop
                    }
                else {
                        if (p.SubAddrLen)   p.ReadState++;  //Send Access Address
                        else p.ReadState+=3;    //No Address
                    }
                }
                break;
        case 4: //Send Address
                switch(p.SubAddrLen) {
                    case 4: p.TransferByte=(p.SubAddr >> 24)&0x000000FF; break;
                    case 3: p.TransferByte=(p.SubAddr >> 16)&0x000000FF; break;
                    case 2: p.TransferByte=(p.SubAddr >> 8)&0x000000FF; break;
                    case 1: p.TransferByte=p.SubAddr&0x000000FF; break;
                }
                p.SubAddrLen--;
                p.ReadState++;
        case 5:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.ReadState=14;     //Stop
                    }
                    else {
                        if (p.SubAddrLen==0) p.ReadState++;
                        else p.ReadState--;
                    }
                }
                break;
        case 6:
                if (IIC_StartStateMachine(IIC)==0) p.ReadState++;
                break;
        case 7: //Send Device Read
                p.TransferByte=p.Device|0x01;
                p.ReadState++;
        case 8:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.ReadState=14;
                    }
                    else {
                        if (p.TransferCount==1) p.ReadState+=3;
                        else p.ReadState++;
                    }
                }
                break
        case 9: //Read Bytes
                p.ReadStop=0;  
                p.ReadState++;
        case 10:
                if (IIC_ReadByteStateMachine(IIC)==0) {
                        *p.TransferBuf=p.TransferByte;
                        p.TransferBuf++;
                        p.TransferCount--;
                        if (p.TransferCount==1) p.ReadState++;
                }
                break
        case 11:    //Read Last Byte
                p.ReadStop=1;
                p.ReadState++;
        case 12:    //Read Last Byte
                if (IIC_ReadByteStateMachine(IIC)==0) {
                        *p.TransferBuf=p.TransferByte;
                        p.TransferCount=0;
                        p.ReadState++;
                }
                break;
        case 13:
                if (IIC_StopStateMachine(IIC)==0) {
                    p.ReadState=0;
                    p.IIC_BUSY=0;
                    p.ERROR=0;
                    if (q.OnRx) q.OnRx();
                }
                break;
        case 14:
                if (IIC_StopStateMachine(IIC)==0) {
                    p.ReadState=0;
                    p.IIC_BUSY=0;
                    p.ERROR=1;
                    if (q.OnErr) q.OnErr();
                }
                break;
    }
    return p.ReadState;
}
 
static uint8_t IIC_WriteStateMachine(uint8_t IIC)
{
    switch(p.WriteState) {
        case 0:
                p.WriteState++;
        case 1:    
                if (IIC_StartStateMachine(IIC)==0) p.WriteState++;
                break;
        case 2:
                p.TransferByte=p.Device;
                p.WriteState++;
        case 3:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.WriteState=11;        //Stop
                    }
                    else {
                        if (p.SubAddrLen)   p.WriteState++; //Send Access Address
                        else {
                            if (p.TransferCount) p.WriteState+=5;   //Multi-Bytes;
                                else p.WriteState+=3; //Single Byte
                        }
                    }
                }
                break;
        case 4: //Send Address
                switch(p.SubAddrLen) {
                    case 4: p.TransferByte=(p.SubAddr >> 24)&0x000000FF; break;
                    case 3: p.TransferByte=(p.SubAddr >> 16)&0x000000FF; break;
                    case 2: p.TransferByte=(p.SubAddr >> 8)&0x000000FF; break;
                    case 1: p.TransferByte=p.SubAddr&0x000000FF; break;
                }
                p.SubAddrLen--;
                p.WriteState++;
        case 5:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.WriteState=11;        //Stop
                    }
                    else {
                        if (p.SubAddrLen==0) {
                            if (p.TransferCount) p.WriteState+=3;   //Multi-Bytes;
                                else p.WriteState++; //Single Byte
                        }
                        else p.WriteState--;
                    }
                }
                break;
        case 6: //Send Only One Byte
                p.TransferByte=(uint32_t)p.TransferBuf;
                p.WriteState++;
        case 7:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.WriteState=11;        //Stop
                    }
                    else {
                        p.WriteState+=3;
                    }
                }
                break;
        case 8: //Send Multi-Bytes Data
                p.TransferByte=*p.TransferBuf; p.TransferBuf++; p.TransferCount--;
                p.WriteState++;
        case 9:
                if (IIC_WriteByteStateMachine(IIC)==0) {
                    if (p.WriteACK==1) {
                        p.WriteState=11;        //Stop
                    }
                    else {
                        if (p.TransferCount==0) p.WriteState++;
                        else p.WriteState--;
                    }
                }
                break;
        case 10:
                if (IIC_StopStateMachine(IIC)==0) {
                    p.WriteState=0;
                    p.IIC_BUSY=0;
                    p.ERROR=0;
                    if (q.OnTx) q.OnTx();
                }
                break;
        case 11:
                if (IIC_StopStateMachine(IIC)==0) {
                    p.WriteState=0;
                    p.IIC_BUSY=0;
                    p.ERROR=1;
                    if (q.OnErr) q.OnErr();
                }
                break;
    }
    return p.WriteState;
}          
 
static uint8_t IIC_StateMachine(uint8_t IIC)
{
    if (p.Command) return IIC_ReadStateMachine(IIC);
        return IIC_WriteStateMachine(IIC);
}
 
 
uint8_t I2C_Read7(uint8_t IIC, uint8_t device, uint8_t Addr, uint8_t *Buf, uint8_t Count)
{
    if (p.IIC_BUSY==0) {
        memset(&p, 0, sizeof(IIC_State));
        p.Command=1;    //1-Read, 0=Write;
        p.Device=device;
        p.SubAddr=Addr;
        p.SubAddrLen=1;
        p.TransferBuf=Buf;
        p.TransferCount=Count;
        p.IIC_BUSY=1;
        TIM_Cmd(Timer[IIC], ENABLE);
        return 1;
    }  
    else return 0; 
}
 
uint8_t I2C_Read16(uint8_t IIC, uint8_t device, uint16_t Addr, uint8_t *Buf, uint8_t Count)
{
    if (p.IIC_BUSY==0) {
        memset(&p, 0, sizeof(IIC_State));
        p.Command=1;    //1-Read, 0=Write;
        p.Device=device;
        p.SubAddr=Addr;
        p.SubAddrLen=2;
        p.TransferBuf=Buf;
        p.TransferCount=Count;
        p.IIC_BUSY=1;
        TIM_Cmd(Timer[IIC], ENABLE);
        return 1;
    }  
    else return 0; 
}
 
uint8_t I2C_WriteByte7(uint8_t IIC, uint8_t device, uint8_t Addr, uint8_t Data)
{
    if (p.IIC_BUSY==0) {
        memset(&p, 0, sizeof(IIC_State));
        p.Command=0;    //1-Read, 0=Write;
        p.Device=device;
        p.SubAddr=Addr;
        p.SubAddrLen=1;
        p.TransferBuf=(uint8_t *)Data;
        p.TransferCount=0;
        p.IIC_BUSY=1;
        TIM_Cmd(Timer[IIC], ENABLE);
        return 1;
    }  
    else return 0; 
}
 
uint8_t I2C_Write16(uint8_t IIC, uint8_t device, uint16_t Addr, uint8_t *Buf, uint8_t Count)
{
    if (p.IIC_BUSY==0) {
        memset(&p, 0, sizeof(IIC_State));
        p.Command=0;    //1-Read, 0=Write;
        p.Device=device;
        p.SubAddr=Addr;
        p.SubAddrLen=2;
        p.TransferBuf=Buf;
        p.TransferCount=Count;
        p.IIC_BUSY=1;
        TIM_Cmd(Timer[IIC], ENABLE);
        return 1;
    }  
    else return 0; 
}
 
#if (IIC_COUNT>=1)
void TIM5_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM5, TIM_IT_Update) != RESET) {
        TIM_ClearITPendingBit(TIM5, TIM_IT_Update);
        if (IIC_StateMachine(0)==0) {
            if (iic_state[0].IIC_BUSY==0) TIM_Cmd(TIM5, DISABLE);
        }
    }
}
#endif
 
#if (IIC_COUNT>=2)
void TIM6_DAC_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM6, TIM_IT_Update) != RESET) {
        TIM_ClearITPendingBit(TIM6, TIM_IT_Update);
        if (IIC_StateMachine(1)==0) {
            if (iic_state[1].IIC_BUSY==0) TIM_Cmd(TIM6, DISABLE);
        }
    }
}
#endif
 
#if (IIC_COUNT>=3)
void TIM7_IRQHandler(void)
{
    if (TIM_GetITStatus(TIM7, TIM_IT_Update) != RESET) {
        TIM_ClearITPendingBit(TIM7, TIM_IT_Update);
        if (IIC_StateMachine(2)==0) {
            if (iic_state[2].IIC_BUSY==0) TIM_Cmd(TIM7, DISABLE);
        }
    }
}
#endif

  

STM32F4XX中断方式通过IO模拟I2C总线,布布扣,bubuko.com

STM32F4XX中断方式通过IO模拟I2C总线

原文:http://www.cnblogs.com/hezihang/p/3674657.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!