BZOJ挂了....明天就要出发去GDKOI了....不能弃疗. 于是在cf水了几道题, 写写详(jian)细(dan)题解, 攒攒RP, 希望GDKOI能好好发挥.......
620E. New Year Tree
题目大意:
N个结点的树, 结点1为根, 要支持2种操作(M个操作):
1.将以v为根的子树所有节点的颜色为c
2.询问以v为根的子树中不同颜色个数
N,M<=4*10^5, 1<=c<=60
题解:
处理出dfs序, 线段树维护.
1,2操作都对应线段树的一段区间(子树在dfs序中连续), 线段树结点压位记录当前区间的结点包含哪些颜色.
时间复杂度O(M log N * max(c))
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; const int maxn = 400009; int N, Q, c[maxn]; int Id[maxn], Left[maxn], Right[maxn], dfn; struct edge { int t; edge* n; } E[maxn << 1], *Pt = E, *H[maxn]; inline void AddEdge(int u, int v) { Pt->t = v, Pt->n = H[u], H[u] = Pt++; } void DFS(int x, int fa = -1) { Id[++dfn] = x; Left[x] = dfn; for(edge* e = H[x]; e; e = e->n) if(e->t != fa) DFS(e->t, x); Right[x] = dfn; } struct Node { Node *lc, *rc; ll v; int mk; inline void pd() { if(~mk) { lc->mk = mk; rc->mk = mk; v = 1LL << mk; mk = -1; } } inline void upd() { if(lc && rc) v = lc->v | rc->v; if(~mk) v = 1LL << mk; } } pool[maxn << 1], *pt = pool, *Root; int L, R, Val; void Build(Node* t, int l, int r) { int m = (l + r) >> 1; t->mk = -1; if(l != r) { Build(t->lc = pt++, l, m); Build(t->rc = pt++, m + 1, r); t->upd(); } else t->v = 1LL << c[Id[m]]; } void Modify(Node* t, int l, int r) { if(L <= l && r <= R) { t->mk = Val; } else { int m = (l + r) >> 1; t->pd(); L <= m ? Modify(t->lc, l, m) : t->lc->upd(); m < R ? Modify(t->rc, m + 1, r) : t->rc->upd(); } t->upd(); } ll Query(Node* t, int l, int r) { if(L <= l && r <= R) return t->v; int m = (l + r) >> 1; t->pd(); t->lc->upd(), t->rc->upd(); return (L <= m ? Query(t->lc, l, m) : 0) | (m < R ? Query(t->rc, m + 1, r) : 0); } int calc(ll n) { int ret = 0; for(; n; n -= n & -n) ret++; return ret; } void Work() { DFS(dfn = 0); Build(Root = pt++, 1, N); int t, x; while(Q--) { scanf("%d%d", &t, &x), x--; L = Left[x], R = Right[x]; if(t == 1) { scanf("%d", &Val), Val--; Modify(Root, 1, N); } else printf("%d\n", calc(Query(Root, 1, N))); } } void Init() { int u, v; scanf("%d%d", &N, &Q); for(int i = 0; i < N; i++) scanf("%d", c + i), c[i]--; for(int i = 1; i < N; i++) { scanf("%d%d", &u, &v); u--, v--; AddEdge(u, v); AddEdge(v, u); } } int main() { #ifndef ONLINE_JUDGE freopen("test.in", "r", stdin); freopen("test.out", "w", stdout); #endif Init(); Work(); return 0; }
609E. Minimum spanning tree for each edge
题目大意:
N个结点, M条无向边, 第i条边连接ui, vi, 边权为wi, 依次输出包含第i条边的最小生成树.
1<=N,M<=2*10^5, 1<=wi<=10^9.
题解:
先跑出任意一个MST(设权值和为tot), 然后建树.
树链剖分, RMQ维护边权最大值(不需要线段树).
对于每条边ui, vi, wi, 求出ui~vi路径上的最大边权maxv, 对于这条边的答案就是tot - maxv + wi.
时间复杂度O(N log N + M log N)
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; const int maxn = 200009; int N, M; ll tot, ans[maxn]; struct e { int u, v, w, Id; bool operator < (const e &t) const { return w < t.w; } } Edge[maxn]; struct edge { int t, w; edge* n; } E[maxn << 1], *pt = E, *H[maxn]; inline void AddEdge(int u, int v, int w) { pt->t = v, pt->w = w, pt->n = H[u], H[u] = pt++; } int par[maxn]; int Find(int x) { return x == par[x] ? x : par[x] = Find(par[x]); } int RMQ[20][maxn], w[maxn]; int top[maxn], fa[maxn], Id[maxn], dep[maxn], sz[maxn], ch[maxn]; int Top, dfn; void dfs(int x) { sz[x] = 1, ch[x] = -1; for(edge* e = H[x]; e; e = e->n) if(e->t != fa[x]) { dep[e->t] = dep[x] + 1; fa[e->t] = x; w[e->t] = e->w; dfs(e->t); sz[x] += sz[e->t]; if(!~ch[x] || sz[ch[x]] < sz[e->t]) ch[x] = e->t; } } void DFS(int x) { top[x] = Top; Id[x] = dfn++; if(~ch[x]) DFS(ch[x]); for(edge* e = H[x]; e; e = e->n) if(e->t != fa[x] && e->t != ch[x]) DFS(Top = e->t); } void Init_Query() { for(int i = 0; i < N; i++) RMQ[0][Id[i]] = w[i]; for(int i = 1; (1 << i) <= N; i++) for(int j = 0; j + (1 << i) <= N; j++) RMQ[i][j] = max(RMQ[i - 1][j], RMQ[i - 1][j + (1 << (i - 1))]); } int Qmax(int l, int r) { int Log = log2(r - l + 1); return max(RMQ[Log][l], RMQ[Log][r - (1 << Log) + 1]); } int Query(int x, int y) { int ret = 0; for(; top[x] != top[y]; x = fa[top[x]]) { if(dep[top[x]] < dep[top[y]]) swap(x, y); ret = max(ret, Qmax(Id[top[x]], Id[x])); } if(x == y) return ret; if(dep[x] < dep[y]) swap(x, y); return max(ret, Qmax(Id[y] + 1, Id[x])); } void Work() { tot = 0; sort(Edge, Edge + M); for(int i = 0; i < N; i++) par[i] = i; for(int i = 0; i < M; i++) { int u = Find(Edge[i].u), v = Find(Edge[i].v); if(u != v) { par[u] = v; tot += Edge[i].w; AddEdge(Edge[i].u, Edge[i].v, Edge[i].w); AddEdge(Edge[i].v, Edge[i].u, Edge[i].w); Edge[i].Id += M; } } fa[0] = -1, w[0] = dep[0] = 0; dfs(0); DFS(Top = dfn = 0); Init_Query(); for(int i = 0; i < M; i++) if(Edge[i].Id < M) { ans[Edge[i].Id] = tot - Query(Edge[i].u, Edge[i].v) + Edge[i].w; } else ans[Edge[i].Id - M] = tot; for(int i = 0; i < M; i++) cout << ans[i] << "\n"; } void Init() { scanf("%d%d", &N, &M); for(int i = 0; i < M; i++) { scanf("%d%d%d", &Edge[i].u, &Edge[i].v, &Edge[i].w); Edge[i].u--, Edge[i].v--; Edge[i].Id = i; } } int main() { Init(); Work(); return 0; }
600D. Area of Two Circles‘ Intersection
题目大意:
给2个圆, 求它们交的面积.
-10^9<=x,y<=10^9, 1<=r<=10^9
题解:
模板题.
先判掉相离和相切的情况, 然后利用余弦定理与扇形和三角形面积公式解决.
时间复杂度O(1)
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long double ld; void Work() { int x0, x1, y0, y1, r0, r1; scanf("%d%d%d%d%d%d", &x0, &y0, &r0, &x1, &y1, &r1); ld d = sqrt((ld) (x0 - x1) * (x0 - x1) + (ld) (y0 - y1) * (y0 - y1)); if(r0 + r1 <= d) { puts("0"); return; } if(abs(r0 - r1) >= d) { printf("%.10lf\n", (double) ld(acos(-1.0)) * min(r0, r1) * min(r0, r1)); return; } ld a0 = acos((ld(r0) * r0 + ld(d) * d - ld(r1) * r1) / (d * r0 * 2)); // angle_0 ld a1 = acos((ld(r1) * r1 + ld(d) * d - ld(r0) * r0) / (d * r1 * 2)); // angle_1 printf("%.10lf\n", (double) (ld(r0) * r0 * (a0 - sin(a0) * cos(a0)) + ld(r1) * r1 * (a1 - sin(a1) * cos(a1)))); } int main() { Work(); return 0; }
592D. Super M
题目大意:
给棵N个结点的树, 你需要走到其中的M个点, 起始位置任选. 求M个点全都走过的最短路径, 多种方案则选择起始位置的结点字典序小的.
1<=m<=n<=123456
题解:
去掉一些没用的结点与边, 使得保留下来的树的叶子结点全部为需要到达的点.
记留下来的边总长为x, 起点与终点距离为y, 通过观察(?)可以发现答案为2*x-y(画个图感受一下, 易证).
所以要最大化y.那么就是在新树中找出1条直径, 并且某一端点字典序最小(多条直径时).
对于树的直径, 可以使用经典的BFS/DFS做法.
时间复杂度O(N)
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn = 123460; int n, m; bool F[maxn]; struct edge { int t, f; edge* n; } E[maxn << 1], *pt = E, *H[maxn]; inline void AddEdge(int u, int v) { pt->t = v, pt->f = 1, pt->n = H[u], H[u] = pt++; } int X, Y, d[maxn], ans; void dfs(int x, int fa) { d[x] = F[x]; for(edge* e = H[x]; e; e = e->n) if(e->t != fa) { dfs(e->t, x); if(!d[e->t]) { e->f = 0; } else d[x] += d[e->t]; } } void dfs(int x, int dist, int fa) { d[x] = dist; for(edge* e = H[x]; e; e = e->n) if(e->f && e->t != fa) dfs(e->t, dist + 1, x); } void calc(int x, int fa = -1) { for(edge* e = H[x]; e; e = e->n) if(e->f && e->t != fa) calc(e->t, x), ans += 2; } void Work() { int mx, Id; for(int i = 0; i < n; i++) if(F[i]) { dfs(i, -1); break; } for(int i = 0; i < n; i++) if(F[i]) { dfs(i, 0, -1); break; } mx = 0; for(int i = 0; i < n; i++) if(F[i]) { mx = max(mx, d[i]); if(mx == d[i]) X = i; } dfs(X, 0, -1); mx = 0; for(int i = 0; i < n; i++) if(F[i]) { mx = max(mx, d[i]); if(mx == d[i]) Y = i; } ans = -d[Y], Id = min(X, Y); for(int i = 0; i < n; i++) if(F[i] && d[i] == mx) Id = min(Id, i); dfs(Y, 0, -1); for(int i = 0; i < n; i++) if(F[i] && d[i] == mx) Id = min(Id, i); calc(Y); printf("%d\n%d\n", ++Id, ans); } void Init() { scanf("%d%d", &n, &m); int u, v; for(int i = 1; i < n; i++) { scanf("%d%d", &u, &v); u--, v--; AddEdge(u, v); AddEdge(v, u); } memset(F, 0, sizeof F); for(int i = 0; i < m; i++) { scanf("%d", &v); F[--v] = true; } } int main() { Init(); Work(); return 0; }
596D. Wilbur and Trees
题目大意:
1条线上有N棵位置为xi,高为H的树. 要把它们全部砍下来, 每次随机选择最左边或者最右边的树砍下来. 每棵树倒向左边的概率为p, 假如2棵树之间的距离严格小于H, 那么1棵树向另一棵树方向倒会撞倒另1棵树, 求最后树覆盖线的期望长度. 1<=N<=2000, 1<=H<=10^8, -10^8<=xi<=10^8, 0<=p<=1
题解:
期望dp. 先对树的位置排序.
dp(l, r, ls, rs)表示第l~r棵树没倒, ls,rs分别是第l-1棵树和第r+1棵树的倒向(0左1右).
枚举第l棵树倒下或者第r棵树倒下(概率均为0.5), 再枚举倒下的方向(概率:左边p, 右边(1-p)), 以此来状态转移.
时间复杂度O(N^2)
#include<cstdio> #include<cassert> #include<cstring> #include<algorithm> using namespace std; const int maxn = 2009; bool vis[maxn][maxn][2][2]; double dp[maxn][maxn][2][2], p; int N, H, x[maxn], L[maxn], R[maxn]; double Dp(int l, int r, int ls,int rs) { if(l > r) return 0; double &t = dp[l][r][ls][rs]; if(vis[l][r][ls][rs]) return t; vis[l][r][ls][rs] = true; int _l = x[l - 1] + (ls ? H : 0), _L = max(l, L[r]); int _r = x[r + 1] - (rs ? 0 : H), _R = min(r, R[l]); t = p * (min(x[l] - _l, H) + Dp(l + 1, r, 0, rs)) // left -> left + (1 - p) * (min(_r - x[r], H) + Dp(l, r - 1, ls, 1)); // right -> right t += (1 - p) * (x[_R] - x[l] + min(_r - x[_R], H) + Dp(_R + 1, r, 1, rs)) // left -> right + p * (x[r] - x[_L] + min(x[_L] - _l, H) + Dp(l, _L - 1, ls, 0)); // right -> left return t *= 0.5; } void Init() { scanf("%d%d%lf", &N, &H, &p); x[0] = -500000000; x[N + 1] = 500000000; for(int i = 1; i <= N; i++) scanf("%d", x + i); sort(x + 1, x + N + 1); memset(vis, 0, sizeof vis); L[0] = 1; for(int i = 1; i <= N; i++) L[i] = (x[i - 1] + H > x[i] ? L[i - 1] : i); R[N + 1] = N; for(int i = N; i >= 1; i--) R[i] = (x[i] + H > x[i + 1] ? R[i + 1] : i); } int main() { Init(); printf("%.10lf\n", Dp(1, N, 0, 1)); return 0; }
写完啦~~
原文:http://www.cnblogs.com/JSZX11556/p/5199528.html