Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / ___5__ ___1__ / \ / 6 _2 0 8 / 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
hint:利用先序遍历分别获取root节点到目标节点的路径,然后比较两路径最长公布部分,就可以发现他们的LCA
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { vector<TreeNode*> p_path, q_path; vector<TreeNode*> path; get_path(root, p, &path, &p_path); // 获取root到p的节点路径 path.clear(); get_path(root, q, &path, &q_path); // 获取root到q的节点路径 int len = min(p_path.size(), q_path.size()); int i = 0; while (i < len && p_path[i] == q_path[i]) { // 找到第一个不同的节点,那么前一个节点就是LCD ++i; } return p_path[i-1]; } void get_path(TreeNode* root, TreeNode* target, vector<TreeNode*>* path, vector<TreeNode*>* target_path) { if (!target_path->empty() && target_path->back() == target) { // 如果已经找到了root到target节点的路径,那就直接不用搜 return ; } if (root == NULL) { // 空姐点直接不搜 return ; } path->push_back(root); // 访问根节点,加入路径 if (path->back() == target) { // 判断是否是到target节点 *target_path = *path; } get_path(root->left, target, path, target_path); // 继续深搜左子树 get_path(root->right, target, path, target_path); // 继续深搜右子树 path->pop_back(); // 回溯 } };
原来还有一道BST的LCA
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / ___2__ ___8__ / \ / 0 _4 7 9 / 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { int max_val = p->val, min_val = q->val; if (max_val < min_val) { swap(max_val, min_val); } TreeNode* cur = root; while (cur != NULL) { if (cur->val < min_val) { // 若当前节点比两目标节点的值都小,需右移 cur = cur->right; } else if (cur->val > max_val) { // 若当前节点比两目标节点的值都大,需左移 cur = cur->left; } else { break; } } return cur; } };
Lowest Common Ancestor of a Binary Tree
原文:http://www.cnblogs.com/bugfly/p/5205954.html