Network Abstraction Layer,简称NAL。
h.264把原始的yuv文件编码成码流文件,生成的码流文件就是NAL单元流(NAL unit Stream)。而NAL单元流,就是NAL单元组成的。
标准的Annex B规定了NAL单元组成NAL单元流的方式,下面描述了如何将一个NAL单元打包起来,而多个NAL单元进行组合则形成了NAL单元流。
byte_stream_nal_unit( NumBytesInNALunit ) { C Descriptor while( next_bits( 24 ) != 0x000001 && next_bits( 32 ) != 0x00000001 ) leading_zero_8bits /* equal to 0x00 */ f(8) if( next_bits( 24 ) != 0x000001 ) zero_byte /* equal to 0x00 */ f(8) start_code_prefix_one_3bytes /* equal to 0x000001 */ f(24) nal_unit( NumBytesInNALunit ) while( more_data_in_byte_stream( ) && next_bits( 24 ) != 0x000001 && next_bits( 32 ) != 0x00000001 ) trailing_zero_8bits /* equal to 0x00 */ f(8) }
语法元素
NAL单元是对RBSP进行打包生成的,NAL单元有如下语法
nal_unit( NumBytesInNALunit ) { C Descriptor forbidden_zero_bit All f(1) nal_ref_idc All u(2) nal_unit_type All u(5) NumBytesInRBSP = 0 nalUnitHeaderBytes = 1 if( nal_unit_type = = 14 | | nal_unit_type = = 20 | | nal_unit_type = = 21 ) { if( nal_unit_type ! = 21 ) svc_extension_flag All u(1) else avc_3d_extension_flag All u(1) if( svc_extension_flag ) { nal_unit_header_svc_extension( ) /* specified in Annex G */ All nalUnitHeaderBytes += 3 } else if( avc_3d_extension_flag ) { nal_unit_header_3davc_extension( ) /* specified in Annex J */ nalUnitHeaderBytes += 2 } else { nal_unit_header_mvc_extension( ) /* specified in Annex H */ All nalUnitHeaderBytes += 3 } } for( i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++ ) { if( i + 2 < NumBytesInNALunit && next_bits( 24 ) = = 0x000003 ) { rbsp_byte[ NumBytesInRBSP++ ] All b(8) rbsp_byte[ NumBytesInRBSP++ ] All b(8) i += 2 emulation_prevention_three_byte /* equal to 0x03 */ All f(8) } else rbsp_byte[ NumBytesInRBSP++ ] All b(8) } }
语法元素
0x000000 => 0x00000300
0x000001 => 0x00000301
0x000002 => 0x00000302
0x000003 => 0x00000303
……
Raw Byte Sequence Payload,原始字节序列载荷。
跟据nal_unit_type可以分成以下表格
nal_unit_type |
Content of NAL unit and RBSP |
Catogary |
0 |
Unspecified |
|
1 |
Coded slice of a non-IDR picture |
2,3,4 |
2 |
Coded slice data partition A |
2 |
3 |
Coded slice data partition B |
3 |
4 |
Coded slice data partition C |
4 |
5 |
Coded slice of an IDR picture |
2,3 |
6 |
Supplemental enhancement information |
5 |
7 |
Sequence parameter set |
0 |
8 |
Picture parameter set |
1 |
9 |
Access unit delimiter |
6 |
10 |
End of sequence |
7 |
11 |
End of stream |
8 |
12 |
Filler data |
9 |
13 |
Sequence parameter set extension |
10 |
14 |
Prefix NAL unit |
2 |
15 |
Subset sequence parameter set |
0 |
16…18 |
Reserved |
|
19 |
Coded slice of an auxiliary coded |
2,3,4 |
20 |
Coded slice extension |
2,3,4 |
21 |
Coded slice extension for a depth view |
2,3,4 |
22…23 |
Reserved |
|
24…31 |
Unspecified |
第一列代表当前NAL的类型;第二列是该类型对应的描述以及RBSP语法结构名称;第三列列出了当前NAL类型中可能出现的语法元素种类,(Category)种类在所有语法结构中的语法元素后面都有标明。
标准中描述了很多种的RBSP结构并且通过语法表现出来,RBSP语法主要规定了该结构由什么成员组成,各个成员如何组合,成员会占用几个bit。不过虽然RBSP结构有很多种,但是他们也有一个共同点:都有一个RBSP尾部。
RBSP尾部的语法如下:
rbsp_trailing_bits( ) { C Descriptor rbsp_stop_one_bit /* equal to 1 */ All f(1) while( !byte_aligned( ) ) rbsp_alignment_zero_bit /* equal to 0 */ All f(1) }
语法元素
有一种特殊情况:如果采用的熵编码方式为CABAC,而且当前是实际图像内容相关的RBSP(名称包含slice的RBSP结构),那么会在RBSP尾部的后面添加1个或多个0x0000。语法表示如下:
rbsp_slice_trailing_bits( ) { C Descriptor rbsp_trailing_bits( ) All if( entropy_coding_mode_flag ) while( more_rbsp_trailing_data( ) ) cabac_zero_word /* equal to 0x0000 */ All f(16) }
语法元素
RBSP中除了rbsp_trailing_bits以及rbsp_slice_trailing_bits,其余部分被统称为SODB(String Of Data Bits)。
这是SPS RBSP的名称,它的结构如下
seq_parameter_set_rbsp( ) { C Descriptor seq_parameter_set_data( ) 0 rbsp_trailing_bits( ) 0 }
如前面所说,RBSP都有一个rbsp_trailing_bits的尾部。而SPS的结构被包含在了seq_parameter_set_data里面
seq_parameter_set_data( ) { C Descriptor profile_idc 0 u(8) constraint_set0_flag 0 u(1) constraint_set1_flag 0 u(1) constraint_set2_flag 0 u(1) constraint_set3_flag 0 u(1) constraint_set4_flag 0 u(1) constraint_set5_flag 0 u(1) reserved_zero_2bits /* equal to 0 */ 0 u(2) level_idc 0 u(8) seq_parameter_set_id 0 ue(v) if( profile_idc = = 100 | | profile_idc = = 110 | | profile_idc = = 122 | | profile_idc = = 244 | | profile_idc = = 44 | | profile_idc = = 83 | | profile_idc = = 86 | | profile_idc = = 118 | | profile_idc = = 128 | | profile_idc = = 138 | | profile_idc = = 139 | | profile_idc = = 134 ) { chroma_format_idc 0 ue(v) if( chroma_format_idc = = 3 ) separate_colour_plane_flag 0 u(1) bit_depth_luma_minus8 0 ue(v) bit_depth_chroma_minus8 0 ue(v) qpprime_y_zero_transform_bypass_flag 0 u(1) seq_scaling_matrix_present_flag 0 u(1) if( seq_scaling_matrix_present_flag ) for( i = 0; i < ( ( chroma_format_idc != 3 ) ? 8 : 12 ); i++ ) { seq_scaling_list_present_flag[ i ] 0 u(1) if( seq_scaling_list_present_flag[ i ] ) if( i < 6 ) scaling_list( ScalingList4x4[ i ], 16, UseDefaultScalingMatrix4x4Flag[ i ]) 0 else scaling_list( ScalingList8x8[ i − 6 ], 64, UseDefaultScalingMatrix8x8Flag[ i − 6 ] ) 0 } } log2_max_frame_num_minus4 0 ue(v) pic_order_cnt_type 0 ue(v) if( pic_order_cnt_type = = 0 ) log2_max_pic_order_cnt_lsb_minus4 0 ue(v) else if( pic_order_cnt_type = = 1 ) { delta_pic_order_always_zero_flag 0 u(1) offset_for_non_ref_pic 0 se(v) offset_for_top_to_bottom_field 0 se(v) num_ref_frames_in_pic_order_cnt_cycle 0 ue(v) for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ ) offset_for_ref_frame[ i ] 0 se(v) } max_num_ref_frames gaps_in_frame_num_value_allowed_flag 0 u(1) pic_width_in_mbs_minus1 0 ue(v) pic_height_in_map_units_minus1 0 ue(v) frame_mbs_only_flag 0 u(1) if( !frame_mbs_only_flag ) mb_adaptive_frame_field_flag 0 u(1) direct_8x8_inference_flag 0 u(1) frame_cropping_flag 0 u(1) if( frame_cropping_flag ) { frame_crop_left_offset 0 ue(v) frame_crop_right_offset 0 ue(v) frame_crop_top_offset 0 ue(v) frame_crop_bottom_offset 0 ue(v) } vui_parameters_present_flag 0 u(1) if( vui_parameters_present_flag ) vui_parameters( ) 0 }
语法元素
如前面所说,RBSP都有一个rbsp_trailing_bits的尾部。PPS RBSP结构如下
pic_parameter_set_rbsp( ) { C Descriptor pic_parameter_set_id 1 ue(v) seq_parameter_set_id 1 ue(v) entropy_coding_mode_flag 1 u(1) bottom_field_pic_order_in_frame_present_flag 1 u(1) num_slice_groups_minus1 1 ue(v) if( num_slice_groups_minus1 > 0 ) { slice_group_map_type 1 ue(v) if( slice_group_map_type = = 0 ) for( iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++ ) run_length_minus1[ iGroup ] 1 ue(v) else if( slice_group_map_type = = 2 ) for( iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++ ) { top_left[ iGroup ] 1 ue(v) bottom_right[ iGroup ] 1 ue(v) } else if( slice_group_map_type = = 3 | | slice_group_map_type = = 4 | | slice_group_map_type = = 5 ) { slice_group_change_direction_flag 1 u(1) slice_group_change_rate_minus1 1 ue(v) } else if( slice_group_map_type = = 6 ) { pic_size_in_map_units_minus1 1 ue(v) for( i = 0; i <= pic_size_in_map_units_minus1; i++ ) slice_group_id[ i ] 1 u(v) } } num_ref_idx_l0_default_active_minus1 1 ue(v) num_ref_idx_l1_default_active_minus1 1 ue(v) weighted_pred_flag 1 u(1) weighted_bipred_idc 1 u(2) pic_init_qp_minus26 /* relative to 26 */ 1 se(v) pic_init_qs_minus26 /* relative to 26 */ 1 se(v) chroma_qp_index_offset 1 se(v) deblocking_filter_control_present_flag 1 u(1) constrained_intra_pred_flag 1 u(1) redundant_pic_cnt_present_flag 1 u(1) if( more_rbsp_data( ) ) { transform_8x8_mode_flag 1 u(1) pic_scaling_matrix_present_flag 1 u(1) if( pic_scaling_matrix_present_flag ) for( i = 0; i < 6 + ( ( chroma_format_idc != 3 ) ? 2 : 6 ) * transform_8x8_mode_flag; i++ ) { pic_scaling_list_present_flag[ i ] 1 u(1) if( pic_scaling_list_present_flag[ i ] ) if( i < 6 ) scaling_list( ScalingList4x4[ i ], 16, UseDefaultScalingMatrix4x4Flag[ i ] ) 1 else scaling_list( ScalingList8x8[ i − 6 ], 64, UseDefaultScalingMatrix8x8Flag[ i − 6 ] ) 1 } second_chroma_qp_index_offset 1 se(v) } rbsp_trailing_bits( ) 1 }
语法元素
如果当前slice不采用slice data partition的RBSP结构的话,就会是这个RBSP结构,编码时一般都会采用的这个RBSP结构。
我们知道编码是以slice为单位的,这个结构内包含的就是视频中编码的主要内容,视频图像进行编码后就会包含在这个结构内,也就是说编码后的码流中,大多数都是以这个结构的RBSP打包成的NAL unit。
语法结构如下
slice_layer_without_partitioning_rbsp( ) { C Descriptor slice_header( ) 2 slice_data( ) /* all categories of slice_data( ) syntax */ 2 | 3 | 4 rbsp_slice_trailing_bits( ) 2 }
其中分成slice_header,slice_data两部分,最后是RBSP尾部。
slice_header
slice_header就是slice的头部,其中包含的是本slice的相关参数,语法结构如下
slice_header( ) { C Descriptor first_mb_in_slice 2 ue(v) slice_type 2 ue(v) pic_parameter_set_id 2 ue(v) if( separate_colour_plane_flag = = 1 ) colour_plane_id 2 u(2) frame_num 2 u(v) if( !frame_mbs_only_flag ) { field_pic_flag 2 u(1) if( field_pic_flag ) bottom_field_flag 2 u(1) } if( IdrPicFlag ) idr_pic_id 2 ue(v) if( pic_order_cnt_type = = 0 ) { pic_order_cnt_lsb 2 u(v) if( bottom_field_pic_order_in_frame_present_flag && !field_pic_flag ) delta_pic_order_cnt_bottom 2 se(v) } if( pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag ) { delta_pic_order_cnt[ 0 ] 2 se(v) if( bottom_field_pic_order_in_frame_present_flag && !field_pic_flag ) delta_pic_order_cnt[ 1 ] 2 se(v) } if( redundant_pic_cnt_present_flag ) redundant_pic_cnt 2 ue(v) if( slice_type = = B ) direct_spatial_mv_pred_flag 2 u(1) if( slice_type = = P | | slice_type = = SP | | slice_type = = B ) { num_ref_idx_active_override_flag 2 u(1) if( num_ref_idx_active_override_flag ) { num_ref_idx_l0_active_minus1 2 ue(v) if( slice_type = = B ) num_ref_idx_l1_active_minus1 2 ue(v) } } if( nal_unit_type = = 20 | | nal_unit_type = = 21 ) ref_pic_list_mvc_modification( ) /* specified in Annex H */ 2 else ref_pic_list_modification( ) 2 if( ( weighted_pred_flag && ( slice_type = = P | | slice_type = = SP ) ) | | ( weighted_bipred_idc = = 1 && slice_type = = B ) ) pred_weight_table( ) 2 if( nal_ref_idc != 0 ) dec_ref_pic_marking( ) 2 if( entropy_coding_mode_flag && slice_type != I && slice_type != SI ) cabac_init_idc 2 ue(v) slice_qp_delta 2 se(v) if( slice_type = = SP | | slice_type = = SI ) { if( slice_type = = SP ) sp_for_switch_flag 2 u(1) slice_qs_delta 2 se(v) } if( deblocking_filter_control_present_flag ) { disable_deblocking_filter_idc 2 ue(v) if( disable_deblocking_filter_idc != 1 ) { slice_alpha_c0_offset_div2 2 se(v) slice_beta_offset_div2 2 se(v) } } if( num_slice_groups_minus1 > 0 && slice_group_map_type >= 3 && slice_group_map_type <= 5) slice_group_change_cycle 2 u(v) }
语法元素
slice_type | Nane of slice_type |
0 | P(P slice) |
1 | B(B slice) |
2 | I(I slice) |
3 | SP(SP slice) |
4 | SI(SI slice) |
5 | P(P slice) |
6 | B(B slice) |
7 | I(I slice) |
8 | SP(SP slice) |
9 | SI(SI slice) |
slice_data
slice_data是slice的主体部分,当前slice内的宏块编码后的信息都在其中。
语法结构如下
slice_data( ) { C Descriptor if( entropy_coding_mode_flag ) while( !byte_aligned( ) ) cabac_alignment_one_bit 2 f(1) CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag ) moreDataFlag = 1 prevMbSkipped = 0 do { if( slice_type != I && slice_type != SI ) if( !entropy_coding_mode_flag ) { mb_skip_run 2 ue(v) prevMbSkipped = ( mb_skip_run > 0 ) for( i=0; i<mb_skip_run; i++ ) CurrMbAddr = NextMbAddress( CurrMbAddr ) if( mb_skip_run > 0 ) moreDataFlag = more_rbsp_data( ) } else { mb_skip_flag 2 ae(v) moreDataFlag = !mb_skip_flag } if( moreDataFlag ) { if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | | ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) ) mb_field_decoding_flag 2 u(1) | ae(v) macroblock_layer( ) 2 | 3 | 4 } if( !entropy_coding_mode_flag ) moreDataFlag = more_rbsp_data( ) else { if( slice_type != I && slice_type != SI ) prevMbSkipped = mb_skip_flag if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 ) moreDataFlag = 1 else { end_of_slice_flag 2 ae(v) moreDataFlag = !end_of_slice_flag } } CurrMbAddr = NextMbAddress( CurrMbAddr ) } while( moreDataFlag ) }
可以注意到slice_data内头部的对齐外,它由宏块信息循环组合而成。
语法元素
macroblock_layer
如前面所说,这里面的是宏块编码数据,语法结构如下
macroblock_layer( ) { C Descriptor mb_type 2 ue(v) | ae(v) if( mb_type = = I_PCM ) { while( !byte_aligned( ) ) pcm_alignment_zero_bit 3 f(1) for( i = 0; i < 256; i++ ) pcm_sample_luma[ i ] 3 u(v) for( i = 0; i < 2 * MbWidthC * MbHeightC; i++ ) pcm_sample_chroma[ i ] 3 u(v) } else { noSubMbPartSizeLessThan8x8Flag = 1 if( mb_type != I_NxN && MbPartPredMode( mb_type, 0 ) != Intra_16x16 && NumMbPart( mb_type ) = = 4 ) { sub_mb_pred( mb_type ) 2 for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 ) { if( NumSubMbPart( sub_mb_type[ mbPartIdx ] ) > 1 ) noSubMbPartSizeLessThan8x8Flag = 0 } else if( !direct_8x8_inference_flag ) noSubMbPartSizeLessThan8x8Flag = 0 } else { if( transform_8x8_mode_flag && mb_type = = I_NxN ) transform_size_8x8_flag 2 u(1) | ae(v) mb_pred( mb_type ) 2 } if( MbPartPredMode( mb_type, 0 ) != Intra_16x16 ) { coded_block_pattern 2 me(v) | ae(v) if( CodedBlockPatternLuma > 0 && transform_8x8_mode_flag && mb_type != I_NxN && noSubMbPartSizeLessThan8x8Flag && ( mb_type != B_Direct_16x16 | | direct_8x8_inference_flag ) ) transform_size_8x8_flag 2 u(1) | ae(v) } if( CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | | MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) { mb_qp_delta 2 se(v) | ae(v) residual( 0, 15 ) 3 | 4 } } }
语法元素
CodedBlockPatternChroma | Description |
0 | All chroma transform coefficient levels are equal to 0. |
1 |
One or more chroma DC transform coefficient levels shall be non-zero valued. |
2 |
Zero or more chroma DC transform coefficient levels are non-zero valued. |
按照macroblock_layer的语法结构上看,宏块能粗略分成三种结构:PCM、sub_mb_pred(子宏块预测)、mb_pred(宏块预测)。另外,虽然skip宏块并不在macroblock内描述,它也是宏块的一种结构。
mb_perd
语法结构如下
mb_pred( mb_type ) { C Descriptor if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 | | MbPartPredMode( mb_type, 0 ) = = Intra_8x8 | | MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) { if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 ) for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) { prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] 2 u(1) | ae(v) if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] ) rem_intra4x4_pred_mode[ luma4x4BlkIdx ] 2 u(3) | ae(v) } if( MbPartPredMode( mb_type, 0 ) = = Intra_8x8 ) for( luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++ ) { prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ] 2 u(1) | ae(v) if( !prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ] ) rem_intra8x8_pred_mode[ luma8x8BlkIdx ] 2 u(3) | ae(v) } if( ChromaArrayType = = 1 | | ChromaArrayType = = 2 ) intra_chroma_pred_mode 2 ue(v) | ae(v) } else if( MbPartPredMode( mb_type, 0 ) != Direct ) { for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++) if( ( num_ref_idx_l0_active_minus1 > 0 | | mb_field_decoding_flag != field_pic_flag ) && MbPartPredMode( mb_type, mbPartIdx ) != Pred_L1 ) ref_idx_l0[ mbPartIdx ] 2 te(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++) if( ( num_ref_idx_l1_active_minus1 > 0 | | mb_field_decoding_flag != field_pic_flag ) && MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 ) ref_idx_l1[ mbPartIdx ] 2 te(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++) if( MbPartPredMode ( mb_type, mbPartIdx ) != Pred_L1 ) for( compIdx = 0; compIdx < 2; compIdx++ ) mvd_l0[ mbPartIdx ][ 0 ][ compIdx ] 2 se(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++) if( MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 ) for( compIdx = 0; compIdx < 2; compIdx++ ) mvd_l1[ mbPartIdx ][ 0 ][ compIdx ] 2 se(v) | ae(v) } }
语法元素
下图是几个mb_pred结构的例子
sub_mb_pred
语法结构如下
sub_mb_pred( mb_type ) { C Descriptor for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) sub_mb_type[ mbPartIdx ] 2 ue(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) if( ( num_ref_idx_l0_active_minus1 > 0 | | mb_field_decoding_flag != field_pic_flag ) && mb_type != P_8x8ref0 && sub_mb_type[ mbPartIdx ] != B_Direct_8x8 && SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L1 ) ref_idx_l0[ mbPartIdx ] 2 te(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) if( ( num_ref_idx_l1_active_minus1 > 0 | | mb_field_decoding_flag != field_pic_flag ) && sub_mb_type[ mbPartIdx ] != B_Direct_8x8 && SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L0 ) ref_idx_l1[ mbPartIdx ] 2 te(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 && SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L1 ) for( subMbPartIdx = 0; subMbPartIdx < NumSubMbPart( sub_mb_type[ mbPartIdx ] ); subMbPartIdx++) for( compIdx = 0; compIdx < 2; compIdx++ ) mvd_l0[ mbPartIdx ][ subMbPartIdx ][ compIdx ] 2 se(v) | ae(v) for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ ) if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 && SubMbPredMode( sub_mb_type[ mbPartIdx ] ) != Pred_L0 ) for( subMbPartIdx = 0; subMbPartIdx < NumSubMbPart( sub_mb_type[ mbPartIdx ] ); subMbPartIdx++) for( compIdx = 0; compIdx < 2; compIdx++ ) mvd_l1[ mbPartIdx ][ subMbPartIdx ][ compIdx ] 2 se(v) | ae(v) }
语法元素
下面是一个sub_mb_pred语法结构的例子,左边的表格分别代表四个子宏块的模式,他们按照顺序被写在sub_mb_pred的头部。图例中,结构上面的数字代表了该语法元素所属的子宏块。
residual,residual_luma
像素残差进行变换、量化后的系数的语法结构。
residual( startIdx, endIdx ) { C Descriptor if( !entropy_coding_mode_flag ) residual_block = residual_block_cavlc else residual_block = residual_block_cabac residual_luma( i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx ) 3 | 4 Intra16x16DCLevel = i16x16DClevel Intra16x16ACLevel = i16x16AClevel LumaLevel4x4 = level4x4 LumaLevel8x8 = level8x8 if( ChromaArrayType = = 1 | | ChromaArrayType = = 2 ) { NumC8x8 = 4 / ( SubWidthC * SubHeightC ) for( iCbCr = 0; iCbCr < 2; iCbCr++ ) if( ( CodedBlockPatternChroma & 3 ) && startIdx = = 0 ) /* chroma DC residual present */ residual_block( ChromaDCLevel[ iCbCr ], 0, 4 * NumC8x8 − 1, 4 * NumC8x8 ) 3 | 4 else for( i = 0; i < 4 * NumC8x8; i++ ) ChromaDCLevel[ iCbCr ][ i ] = 0 for( iCbCr = 0; iCbCr < 2; iCbCr++ ) for( i8x8 = 0; i8x8 < NumC8x8; i8x8++ ) for( i4x4 = 0; i4x4 < 4; i4x4++ ) if( CodedBlockPatternChroma & 2 ) /* chroma AC residual present */ residual_block( ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ], Max( 0, startIdx − 1 ), endIdx − 1, 15) 3 | 4 else for( i = 0; i < 15; i++ ) ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ][ i ] = 0 } else if( ChromaArrayType = = 3 ) { residual_luma( i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx ) 3 | 4 CbIntra16x16DCLevel = i16x16DClevel CbIntra16x16ACLevel = i16x16AClevel CbLevel4x4 = level4x4 CbLevel8x8 = level8x8 residual_luma( i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx ) 3 | 4 CrIntra16x16DCLevel = i16x16DClevel CrIntra16x16ACLevel = i16x16AClevel CrLevel4x4 = level4x4 CrLevel8x8 = level8x8 } }
residual内部首先会根据entropy_coding_mode_flag来选择CAVLC或者CABAC的熵编码方式,然后在下面进行level的处理。level处理部分先包含了residual_luma,也就是先进行luma level的处理,然后用residual_block对chroma level进行处理。
chroma level一般采用的yuv格式都是4:2:0,也就是ChromaArrayType=1。
residual_luma( i16x16DClevel, i16x16AClevel, level4x4, level8x8, startIdx, endIdx ) { C Descriptor if( startIdx = = 0 && MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) residual_block( i16x16DClevel, 0, 15, 16 ) 3 for( i8x8 = 0; i8x8 < 4; i8x8++ ) if( !transform_size_8x8_flag | | !entropy_coding_mode_flag ) for( i4x4 = 0; i4x4 < 4; i4x4++ ) { if( CodedBlockPatternLuma & ( 1 << i8x8 ) ) if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) residual_block( i16x16AClevel[i8x8*4+ i4x4], Max( 0, startIdx − 1 ), endIdx − 1, 15) 3 else residual_block( level4x4[ i8x8 * 4 + i4x4 ], startIdx, endIdx, 16) 3 | 4 else if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) for( i = 0; i < 15; i++ ) i16x16AClevel[ i8x8 * 4 + i4x4 ][ i ] = 0 else for( i = 0; i < 16; i++ ) level4x4[ i8x8 * 4 + i4x4 ][ i ] = 0 if( !entropy_coding_mode_flag && transform_size_8x8_flag ) for( i = 0; i < 16; i++ ) level8x8[ i8x8 ][ 4 * i + i4x4 ] = level4x4[ i8x8 * 4 + i4x4 ][ i ] } else if( CodedBlockPatternLuma & ( 1 << i8x8 ) ) residual_block( level8x8[ i8x8 ], 4 * startIdx, 4 * endIdx + 3, 64 ) 3 | 4 else for( i = 0; i < 64; i++ ) level8x8[ i8x8 ][ i ] = 0 }
传递给residual_luma的luma level分为几种,如下面的语法元素i16x16DClevel, i16x16AClevel, level4x4, level8x8,需要根据不同情况分开处理,residual_luma做的工作就是针对不同的类型的level,为下面的熵编码语法结构residual_block传递不同的参数。
语法元素
如果没有宏块CBP上的bit全都不为0的话,它的residual就会是如下的样子
原文:http://www.cnblogs.com/TaigaCon/p/5215448.html