1.线性模板和最小平方
·线性回归也可用于简单的分类,boundary虽然简单,但模型势必不准确。
·存在问题:
ESL P13:两种场景
·scikit-learn:
LinearModel.LinearRegression()
class LinearRegression(LinearModel, RegressorMixin): """ Ordinary least squares Linear Regression. Parameters ---------- fit_intercept :(拟合截距) boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. n_jobs : int, optional, default 1 The number of jobs to use for the computation. If -1 all CPUs are used. This will only provide speedup for n_targets > 1 and sufficient large problems. Attributes ---------- coef_ : 系数,斜率。array, shape (n_features, ) or (n_targets, n_features) Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features. intercept_ : 截距。array Independent term in the linear model.
2.最近邻模型
·样本之间的欧式距离
·k-nearest-neighbors:随着k的增加,分类准确率提高,错误率下降;反之亦反,但或造成过拟合。实际上有效的参数是N/k,而非k。下图表现出N/k,k,error之间的关系。
·scikit-learn:
3.二者比较
最小平方:低方差,高偏差;
k-nearest-neighbors:高方差,低偏差。
Least Squares & Nearest Neighbors
原文:http://www.cnblogs.com/JXPITer/p/5244189.html