首页 > 其他 > 详细

层次短语模型之短语规则抽取

时间:2014-04-21 22:14:37      阅读:611      评论:0      收藏:0      [点我收藏+]

层次短语模型是David Chiang在短语模型基础之上提出来的模型,该模型属于形式化句法翻译模型。将普通短语模型拓展成了层次化的短语。例如“X1 和 X2”。

本文着重讲述层次短语模型的短语规则抽取模块,也就是如何从双语句对的训练集中抽取去“短语表”。


我们可以参看如下图,系统的总体框架图:

bubuko.com,布布扣 

将系统中出现的物体都抽象成对象。大家可以通过命名就知道此点。


下面我们将对重要的子过程进行讲述:

1、LexTranslator词到词的翻译

底层的数据结构如下:

	typedef map<Word, Float> LexTableItem;
	typedef map<Word, map<Word, Float> > LexTable;
	LexTable f2e_table_; // prob(0.0-1.0) from f to e
	LexTable e2f_table_; 

基本流程如下:

bubuko.com,布布扣


2、对齐一致性的抽取

对齐一致性的抽取采用了前缀数组,通过检测数组的相应范围变化是否一致,得出是否为对齐一致性。

void Alignment::CreateTightConsistSpan(int src_limit, int trg_limit)
{
    //count the size of alignment of prefix
    vector<int> src_count, trg_count;
    src_count.resize(m_src_size, 0);
    trg_count.resize(m_trg_size, 0);

    for (size_t i = 0; i < (size_t)m_src_size; i++) 
	{
        for (size_t j = 0; j < m_wa[i].size(); j++) 
		{
            src_count[i]++;
            trg_count[m_wa[i][j]]++;
        }//end for j
    }//end for i

    for (size_t i = 1; i < src_count.size(); i++) 
		src_count[i] += src_count[i - 1];
    for (size_t i = 1; i < trg_count.size(); i++) 
		trg_count[i] += trg_count[i - 1];

	Alignment::Span trg;
    for (int begin = 0; begin < m_src_size; begin++) 
	{
        trg.first = MAX_INT;
        trg.second = MIN_INT;
        for (int dist = 1;  dist <= src_limit && dist + begin - 1 < m_src_size; dist++) 
		{
            int end = begin + dist - 1;
            for (size_t i = 0; i < m_wa[end].size(); i++) 
			{
                if (trg.first > m_wa[end][i]) 
					trg.first = m_wa[end][i];
                if (trg.second < m_wa[end][i]) 
					trg.second = m_wa[end][i];
            }

            if (trg.first > trg.second) //null alignment
                continue;
            if (trg.second - trg.first + 1 > trg_limit)
                continue;

            int f = src_count[end];
            if (begin != 0) 
				f -= src_count[begin - 1];

            f -= trg_count[trg.second];
            if (trg.first != 0) 
				f += trg_count[trg.first - 1];

            if (f == 0) //consistent to align
			{
				//tight consist, boundary words must have alignments
                if (m_wa[begin].size() != 0 && m_wa[end].size() != 0) 
					m_consist_spans[Alignment::Span(begin, end)] = trg;
            }
        }
    }
}

仔细研究代码,此段代码很高效!


3、Extractor的抽取规则模块讲解

void Extractor::Extract(const string& src_file, const string& trg_file, const string& wa_file)
{
	ifstream in_src, in_trg, in_wa;	
	ReadFile(src_file, in_src);
	ReadFile(trg_file, in_trg);
	ReadFile(wa_file, in_wa);

	Log::Instance().Out() << "Starting to extract rule!" << endl;
	Log::Instance().TimeStart();

	map<string, Rule *> sent_rules;//store the rules extracted from a sentence
	map<string, Rule *> rule_map; //cache for store extracted but not yet output file
	string src, trg, wa;

	int part_file_id = 0;
	int sent_id = 0;
	int rule_count = 0;
	while (getline(in_src, src)
		&& getline(in_trg, trg)
		&& getline(in_wa, wa)) 
	{
		sent_id ++;

		SentPair sent;
		sent.SetSentId(sent_id - 1);
		
		if (sent.Init(src, trg, wa)) 
			sent.ExtractRules(sent_rules);
		else 
			continue;
		
		rule_count += sent_rules.size();
		LocalCombine(sent_rules, rule_map);

		if ((int) rule_map.size() > StaticData::Instance().Capacity()) 
		{
			OutCache(m_part_file, part_file_id, e2f, rule_map);
			part_file_id++;
		}

		if (sent_id % 10000 == 0) 
		{
			Log::Instance().Out() << "cur sent_id:" << sent_id <<endl;;
		}
	}
	OutCache(m_part_file, part_file_id, e2f, rule_map);

	in_src.close();
	in_trg.close();
	in_wa.close();

	Log::Instance().Out() << "end extracted rule in time (s):"
		<< Log::Instance().TimeEnd() << endl;
}

不断的对每一句话进行提取规则,然后加入到规则表中,如果规则表的数目超过了设定的值,将输出到临时文件中,并且清空规则表。经过这一步的处理之后,就得到了很多临时文件。

4、规则概率估算

1)合并所有的临时文件->一个e2f的文件A

2)对A进行排序

3)计算f2e的概率,并且生成f2e文件B

4)对B进行排序

5)计算e2f的概率,并且生成最终规则文件

5、抽取一个句对中所有的规则

void SentPair::ExtractRules(std::map<string, Rule *>& rule_map)
{
	SentenceMeta sm;
	sm.sent_id_ = this->sent_id_;
	sm.src_ = &src_;
	sm.trg_ = &trg_;
	StaticData::Instance().GetFeatureSet().Prepare(sm);

	// use cky-style algorithm to find all consistent rule
	for (int dist = 1; dist <= StaticData::Instance().SrcSpanLimit(); dist++) 
	{
		for (size_t begin = 0; begin + dist - 1 < src_.size(); begin++) 
		{
			pair<int,int> span;
			span.first = begin;
			span.second = begin + dist - 1;

			if (Log::Instance().IsVerbose(3)) 
			{
				Log::Instance().Out() << "\n deal span (" 
					<< span.first << ", " << span.second << ")" <<endl;
			}

			GetRule(span, rule_map);
		} //end begin
	} //end dist

	map<string, Rule *>::const_iterator citer;
	for (citer = rule_map.begin(); citer != rule_map.end(); citer++)
		StaticData::Instance().GetFeatureSet().Final(sm, *citer->second);
}

抽取某一个span范围内的规则

void SentPair::GetRule(const pair<int,int>& span, map<string ,Rule *>& rule_map)
{
	// current span must be consist
	Alignment::SpanAlign::const_iterator citer;
	const Alignment::SpanAlign& cs = wa_->GetConsistSpans(); 
	map<string, Rule *>::iterator iter;
	citer = cs.find(span);
	if (citer == cs.end()) 
		return;
	
	// TODO support extract boundary expansion
	// full lexical rule trg_span shall be small than limit
	SentenceMeta sm;
	sm.sent_id_ = this->sent_id_; 
	sm.src_ = &src_;
	sm.trg_ = &trg_;
	Context context;
	context.src_span_ = span;
	context.trg_span_ = citer->second;

	//extract bp
	if (span.second - span.first + 1 <= StaticData::Instance().InitPhraseLimit()) 
	{
		vector<pair<int,int> > empty;		
		Rule * rule = new Rule();		
		CreateSrcTrg(span, empty, citer->second, empty, rule->src_rhs_, rule->trg_rhs_, rule->wa_);
		StaticData::Instance().GetFeatureSet().Traverse(sm, context, 1.0, *rule);
		//cout << "rule->fract_count_: " << rule->fract_count_ << endl;

		iter = rule_map.find(rule->Key());
		if (iter == rule_map.end()) 
		{
			rule_map[rule->Key()] = rule;
		} 
		else 
		{
			iter->second ->Add(*rule);
			delete rule;
		}
	}
	
	//extract rules with variable 
	vector<vector<pair<int,int> > > var_span;
	EnumerateVar(span, var_span);	
	vector<pair<int,int> > trg_childs_span;
	for (size_t i = 0; i < (int)var_span.size(); i++) 
	{
		trg_childs_span.resize(var_span[i].size());
		for (size_t j = 0; j < var_span[i].size(); j++)
			trg_childs_span[j] = cs.find(var_span[i][j])->second;

		Rule *rule = new Rule();
		CreateSrcTrg(span, var_span[i], citer->second, trg_childs_span, rule->src_rhs_, rule->trg_rhs_, rule->wa_);
		//cout << "rule->fract_count_: " << rule->fract_count_ << endl;
		//if (rule->m_wa.size() == var_span[i].size()) {//must have lexical alignment
		if (rule->AlignLinkCount() == var_span[i].size()) //must have lexical alignment
		{
			delete rule;
			continue;
		}
		context.src_var_spans_ = var_span[i];
		context.trg_var_spans_ = trg_childs_span;
		StaticData::Instance().GetFeatureSet().Traverse(sm, context, (Float) 1.0/var_span.size(), *rule);
		
		iter = rule_map.find(rule->Key());
		if (iter == rule_map.end()) 
		{
			rule_map[rule->Key()] = rule;
		} 
		else 
		{
			iter->second->Add(*rule);
			delete rule;
		}
	}
}


层次短语模型之短语规则抽取,布布扣,bubuko.com

层次短语模型之短语规则抽取

原文:http://blog.csdn.net/ict2014/article/details/24252815

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!