首页 > 其他 > 详细

辗转相除法

时间:2016-03-19 22:52:53      阅读:227      评论:0      收藏:0      [点我收藏+]
1、
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数最大公因子的算法。它是已知最古老的算法, 其可追溯至3000年前。
2、
设两数为a、b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b以后的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r!=0的基础之上的。即m与n亦互质。
3、
自然语言描述
用辗转相除法确定两个正整数 a 和 b(a≥b) 的最大公因数gcd(a,b):
当a mod b=0 时gcd(a,b)=b,否则
gcd(a,b) = gcd(b,a mod b)
递归或循环运算得出结果

辗转相除法

原文:http://www.cnblogs.com/Study02/p/5296305.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!