首页 > 其他 > 详细

并查集基础

时间:2016-03-20 00:43:03      阅读:193      评论:0      收藏:0      [点我收藏+]

 内容摘自维基百科

在计算机科学中,并查集是一种树型的数据结构,其保持着用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。有一个联合-查找算法union-find algorithm)定义了两个操作用于此数据结构:

  • Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
  • Union:将两个子集合并成同一个集合。

并查集的两种优化方法:路径压缩与按秩合并:

第一种方法,称为“按秩合并”,即总是将更小的树连接至更大的树上。因为影响运行时间的是树的深度,更小的树添加到更深的树的根上将不会增加秩除非它们的秩相同。在这个算法中,术语“秩”替代了“深度”,因为同时应用了路径压缩时(见下文)秩将不会与高度相同。单元素的树的秩定义为0,当两棵秩同为r的树联合时,它们的秩r+1。只使用这个方法将使最坏的运行时间提高至每个MakeSet、Union或Find操作技术分享

第二个优化,称为“路径压缩”,是一种在执行“查找”时扁平化树结构的方法。关键在于在路径上的每个节点都可以直接连接到根上;他们都有同样的表示方法。为了达到这样的效果,Find递归地经过树,改变每一个节点的引用到根节点。得到的树将更加扁平,为以后直接或者间接引用节点的操作加速。

 

int fa[N],Rank[N];
void Init(){
    for(int i = 0; i < N; i++){
        fa[i] = i;
        Rank[i] = 1;
    }
}
int getfather(int v){       ///带路径压缩的递归找根节点
    if(fa[v] != v)
        fa[v] = getfather(fa[v]);
    return fa[v];
}
void Union(int x, int y){   /// 普通合并操作
    int fx = getfather(x);
    int fy = getfather(y);
    if(fx != fy)
        fa[fx] = fy;
}

bool Same(int x, int y){    ///判断是否同一集合;
    return getfather(x) == getfather(y);
}

void Weight_Union(int x, int y){///按秩合并,元素少的集合根节点指向元素多的集合的根节点;
    x = getfather(x);
    y = getfather(y);
    if(x == y) return ;
    if(Rank[x] >= Rank[y]){
        fa[y] = x;
        Rank[x] += Rank[y];
    }else{
        fa[x] = y;
        Rank[y] += Rank[x];
    }
    //cout<<x<<"\t"<<y<<"\t"<<Rank[x]<<"\t"<<Rank[y]<<endl;
}

 练习题目:

poj 1611:水题,敲完模板就能过;

 

并查集基础

原文:http://www.cnblogs.com/yoyo-sincerely/p/5191433.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!