二叉树遍历算法总结
本文根据《数据结构与算法》(C语言版)(第三版) 整理。
void PreOrderTraverse(BiTree BT) { if(BT) { printf("%c",BT->data); //访问根结点 PreOrderTraverse(BT->lchild); //前序遍历左子树 PreOrderTraverse(BT->rchild); //前序遍历右子树 } }
void PreOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { printf("%c",p->data); Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); p=p->rchild; } } }
void PreOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { printf("%d\n",p->data); //访问结点p top=top+1; stack[top]=p; p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; top=top-1; p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
void InOrderTraverse(BiTree BT) { if(BT) { InOrderTraverse(BT->lchild); //中序遍历左子树 printf("%c",BT->data); //访问根结点 InOrderTraverse(BT->rchild); //中序遍历右子树 } }
void IneOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); printf("%c",p->data); p=p->rchild; } } }
void InOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p进栈 p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; //结点p出栈 top=top-1; printf("%d\n",p->data); //访问结点p p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
void PostOrderTraverse(BiTree BT) { if(BT) { PostOrderTraverse(BT->lchild); //后序遍历左子树 PostOrderTraverse(BT->rchild); //后序遍历右子树 printf("%c",BT->data); //访问根结点 } }
void PostOrderNoRec(BiTree BT) { stack S; stack tag; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { while(NULL!=p) { Push(S,p); Push(tag,0); p=p->lchild; } if(!StackEmpty(S)) { if(Pop(tag)==1) { p=Top(S); Pop(S); printf("%c",p->data); Pop(tag); //栈tag要与栈S同步 } else { p=Top(S); if(!StackEmpty(S)) { p=p->rchild; Pop(tag); Push(tag,1); } } } } }
void PosOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; //结点的指针栈 int count[100]; //记录结点进栈次数的数组 pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=0; p=p->llink; //继续搜索结点p的左子树 } p=stack[top]; //结点p出栈 top=top-1; if(count[top+1]==0) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=1; p=p->rlink; //继续搜索结点p的右子树 } else { printf("%d\n",p->data); //访问结点p p=NULL; } }while((top>0)); }
typedef struct node { DataType data; struct node *lchild, *rchild; //左、右孩子指针 int ltag, rtag; //左、右线索 }TBinTNode; //结点类型 typedef TBinTNode *TBinTree;在线索化二叉树中,一个结点是叶子结点的充分必要条件是其左、右标志均为1.
void InOrderThreading(TBinTree p) { if(p) { InOrderThreading(p->lchild); //左子树线索化 if(p->lchild) p->ltag=0; else p->ltag=1; if(p->rchild) p->rtag=0; else p->rtag=1; if(*(pre)) //若*p的前驱*pre存在 { if(pre->rtag==1) pre->rchild=p; if(p->ltag==1) p->lchild=pre; } pre=p; //另pre是下一访问结点的中序前驱 InOrderThreading(p->rchild); //右子树线索化 } }
TBinTNode *InOrderSuc(BiThrTree p) { TBinTNode *q; if(p->rtag==1) //第①情况 return p->rchild; else //第②情况 { q=p->rchild; while(q->ltag==0) q=q->lchild; return q; } }
TBinTNode *InOrderPre(BiThrTree p) { TBinTNode *q; if(p->ltag==1) return p->lchild; else { q=p->lchild; //从*p的左孩子开始查找 while(q->rtag==0) q=q->rchild; return q; } }
void TraversInOrderThrTree(BiThrTree p) { if(p) { while(p->ltag==0) p=p->lchild; while(p) { printf("%c",p->data); p=InOrderSuc(p); } } }
原文:http://blog.csdn.net/wp1603710463/article/details/50937743