首页 > 其他 > 详细

HDU 3264 两圆相交,枚举+二分

时间:2014-04-22 18:46:10      阅读:633      评论:0      收藏:0      [点我收藏+]

Open-air shopping malls

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1722    Accepted Submission(s): 599


Problem Description
The city of M is a famous shopping city and its open-air shopping malls are extremely attractive. During the tourist seasons, thousands of people crowded into these shopping malls and enjoy the vary-different shopping.

Unfortunately, the climate has changed little by little and now rainy days seriously affected the operation of open-air shopping malls—it’s obvious that nobody will have a good mood when shopping in the rain. In order to change this situation, the manager of these open-air shopping malls would like to build a giant umbrella to solve this problem.

These shopping malls can be considered as different circles. It is guaranteed that these circles will not intersect with each other and no circles will be contained in another one. The giant umbrella is also a circle. Due to some technical reasons, the center of the umbrella must coincide with the center of a shopping mall. Furthermore, a fine survey shows that for any mall, covering half of its area is enough for people to seek shelter from the rain, so the task is to decide the minimum radius of the giant umbrella so that for every shopping mall, the umbrella can cover at least half area of the mall.
 

Input
The input consists of multiple test cases.
The first line of the input contains one integer T (1<=T<=10), which is the number of test cases.
For each test case, there is one integer N (1<=N<=20) in the first line, representing the number of shopping malls.
The following N lines each contain three integers X,Y,R, representing that the mall has a shape of a circle with radius R and its center is positioned at (X,Y). X and Y are in the range of [-10000,10000] and R is a positive integer less than 2000.
 

Output
For each test case, output one line contains a real number rounded to 4 decimal places, representing the minimum radius of the giant umbrella that meets the demands.
 

Sample Input
1 2 0 0 1 2 0 1
 

Sample Output
2.0822
 


求一个最小半径使得圆心位于 某一个圆的圆心时,可以覆盖n个圆中每一个圆的至少一半面积。

二分半径,然后枚举圆心,判断可行性。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/4/20 9:39:31
File Name :8.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-10
#define pi acos(-1.0)
typedef long long ll;
int dcmp(double x){
	if(fabs(x)<eps)return 0;
	return x>0?1:-1;
}
struct Point{
	double x,y;
	Point(double _x=0,double _y=0){
		x=_x;y=_y;
	}
};
Point operator + (Point a,Point b){
	return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
	return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
	return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
	return Point(a.x/p,a.y/p);
}
bool operator < (const Point &a,const Point &b){
	return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point &b){
	return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
	return a.x*b.x+a.y*b.y;
}
double Length(Point a){
	return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
	return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
	return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
	return a.x*b.y-a.y*b.x;
}
Point vecunit(Point x){
	return x/Length(x);
}
Point Normal(Point x){
	return Point(-x.y,x.x);
}
Point Rotate(Point a,double rad){
	return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
struct Line{
	Point p,v;
	double ang;
	Line(){}
	Line(Point P,Point v):p(P),v(v){
		ang=atan2(v.y,v.x);
	}
	bool operator < (const Line &L) const {
		return ang<L.ang;
	}
	Point point(double a){
		return p+(v*a);
	}
};
bool SegmentIntersection(Point a1,Point a2,Point b1,Point b2){
	double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
		   c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
	return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
struct Circle{
	Point c;
	double r;
	Circle(){}
	Circle(Point c,double r):c(c),r(r){}
	Point point(double a){
		return Point(c.x+cos(a)*r,c.y+sin(a)*r);
	}
};
double area_cir_cir(Circle a,Circle b){
	double d=Length(a.c-b.c),r1=a.r,r2=b.r,r;
	if(r1+r2<=d)return 0;
	else if(fabs(r1-r2)>=d){
		r=min(r1,r2);
		return pi*r*r;
	}
	else{
		double a1=(r1*r1+d*d-r2*r2)/(2*r1*d);
		double a2=(r2*r2+d*d-r1*r1)/(2*r2*d);
		a1=2*acos(a1);
		a2=2*acos(a2);
		return (r1*r1*(a1-sin(a1))+r2*r2*(a2-sin(a2)))/2;
	}
}
Circle s[100];
int main()
{
	int T,n;
	cin>>T;
	while(T--){
		cin>>n;
		for(int i=0;i<n;i++)cin>>s[i].c.x>>s[i].c.y>>s[i].r;
		double left=0,right=100000;
		while(left+eps<right){
			double mid=(left+right)/2;
			int flag=0;
			for(int i=0;i<n;i++){
				int flag1=1;
				Circle p;p.c=s[i].c;p.r=mid;
				for(int j=0;j<n;j++){
					double s1=area_cir_cir(p,s[j]);
					if(s1<pi*s[j].r*s[j].r/2){
						flag1=0;break;
					}
				}
				if(flag1){
					flag=1;break;
				}
			}
		//	cout<<"han "<<left<<" "<<right<<" "<<mid<<endl;
			if(!flag)left=mid;
			else right=mid;
		}
		printf("%.4lf\n",left);
	}
}


HDU 3264 两圆相交,枚举+二分,布布扣,bubuko.com

HDU 3264 两圆相交,枚举+二分

原文:http://blog.csdn.net/xianxingwuguan1/article/details/24304175

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!