2月20日:
查看任务介绍,二分类问题,评价标准logloss
下载数据
2月21~27日:
查看数据组成,标识分类变量、离散变量、连续变量。
发现连续数据有大量非随机空缺(占总量一半),主要集中在v2相关与v8相关列
根据空缺相关性,可将feature分为6组:
g1-v8相关列,g2-v2相关列,g3-与v2v8均不相关的稀疏列,g4-无缺值连续变量,gd-离散变量,gc-分类变量
标签样本不均衡,约75%的y==1,25%的y==0
查看相关性。
2月28日~3月3日:
考虑对缺值数据(feature稀疏样本)进行模型,因feature较少,实现将较快。
对分类变量one-hot赋值。
尝试logistic、linearSVC(no dual)拟合效果较差,大量标签为预测为1类,几乎不出现0类预测
尝试kernelSVC,样本数太大,核矩阵过慢
尝试较浅层Random Forest,同样无法有效辨识类0
尝试xgb,极简易调参后,对feature稀疏样本4-folds cv约0.450,在lb上表现估计约0.457上下
BNP Paribas Cardif Claims Management
原文:http://www.cnblogs.com/catnip/p/5314765.html