1,创建矩阵
matrix (data = NA, nrow = 1, ncol = 1, byrow =FALSE, dimnames = NULL)
创建一个c(1:12)的三行四列的矩阵,
colnames<-c("c1","c2","c3","c4")
rownames<-c("r1","r2","r3")
x<-matrix(1:12,nrow=3,ncol=4,byrow=TRUE,dimnames=list(rownames,colnames))
x
c1 c2 c3 c4
r1 1 2 3 4
r2 5 6 7 8
r3 9 10 11 12
2,矩阵的转置
y<-t(x)
若是针对的是一个向量
y<-(1:10)
装置后得到的是行向量
> t(y)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 2 3 4 5 6 7 8 9 10
若要的到列向量则
> t(t(y))
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
3,创建一个服从正态分布的随机数矩阵
matrix(rnorm(100),nrow=10)
4,制造一个数字相同的n列m行矩阵
matrix(2,ncol=n,nrow=m)
4.1创建对角矩阵
diag(x,ncol=n,nrow=m)
若x为矩阵 则diag(x)将会提取矩阵x的对角,则返回的是向量值
> diag(x)
[1] 1 6 11
> diag(diag(x))
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 6 0
[3,] 0 0 11
返回的是以矩阵对角的对角矩阵
>diag(c(1:4),4,4)
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 2 0 0
[3,] 0 0 3 0
[4,] 0 0 0 4
>diag(3)
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
>A=diag(4)+1
> A
[,1] [,2] [,3] [,4]
[1,] 2 1 1 1
[2,] 1 2 1 1
[3,] 1 1 2 1
[4,] 1 1 1 2
4,求矩阵的行数和列数
n<-ncol
m<-nrow
为矩阵的行和列命名
rownames(x)<-c()
colnames(x)<c()
5,矩阵运算
A为m×n矩阵,c>0,在R中求cA可用符号:“*”,例如:
> c=2
> c*A
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24
6 矩阵相乘
A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:
> A=matrix(1:12,nrow=3,ncol=4)
> B=matrix(1:12,nrow=4,ncol=3)
> A%*%B
[,1] [,2] [,3]
[1,] 70 158 246
[2,] 80 184 288
[3,] 90 210 330
7 矩阵对角元素相关运算
例如要取一个方阵的对角元素,
> A=matrix(1:16,nrow=4,ncol=4)
> A
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
> diag(A)
[1] 1 6 11 16
对一个向量应用diag()
函数将产生以这个向量为对角元素的对角矩阵,例如:
> diag(diag(A))
对一个正整数z应用diag()函数将产生以z维单位矩阵,例如:
> diag(3)
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
对矩阵求逆
solve(x)
原文:http://www.cnblogs.com/yupeter007/p/5325575.html