首页 > 其他 > 详细

3月27日-?

时间:2016-03-28 00:02:17      阅读:420      评论:0      收藏:0      [点我收藏+]

Description

Given an array with
n
integers, assume f(S) as the result of executing xor operation among all the elements of set S. e.g. if S={1,2,3} then f(S)=0.

your task is: calculate xor of all f(s), here s⊆S.

Input

This problem has multi test cases. First line contains a single integer T(T≤20) which represents the number of test cases.
For each test case, the first line contains a single integer number n(1≤n≤1,000) that represents the size of the given set. then the following line consists of n different integer numbers indicate elements(≤109) of the given set.

Output

For each test case, print a single integer as the answer.

Sample Input

1
3
1 2 3

Sample Output

0

In the sample,S={1,2,3}

, subsets of S are:

, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

Hint

题意

给你一个集合S,然后定义F(s)表示这个集合所有元素的异或和。

然后求所有S的子集的F(s)的异或和

题解:

考虑每个数的贡献,显然当n>1的时候,每个数在2^(n-1)个集合里面,所以贡献为0

当n=1的时候,答案就是x啦

技术分享
 1 #include <iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<set>
 6 #include<map>
 7 #include<queue>
 8 #include<vector>
 9 using namespace std;
10 const int maxn = 1e5;
11 typedef long long ll;
12 void input(){
13     int t,n;
14     scanf("%d",&t);
15     while(t--){
16         scanf("%d",&n);
17         int x;
18         scanf("%d",&x);
19         for(int i = 2; i<=n; i++){
20             scanf("%d",&x);
21         }
22         if(n == 1){
23             printf("%d\n",x);
24         }
25         else{
26             printf("0\n");
27         }
28     }
29 }
30 int main()
31 {
32     input();
33     return 0;
34 }
卷珠帘

Description

As we all known, xiaoxin is a brilliant coder. He knew palindromic strings when he was only a six grade student at elementry school.

This summer he was working at Tencent as an intern. One day his leader came to ask xiaoxin for help. His leader gave him a string and he wanted xiaoxin to generate palindromic strings for him. Once xiaoxin generates a different palindromic string, his leader will give him a watermelon candy. The problem is how many candies xiaoxin‘s leader needs to buy?

Input

This problem has multi test cases. First line contains a single integer T(T≤20) which represents the number of test cases.
For each test case, there is a single line containing a string S(1≤length(S)≤1,000).

Output

For each test case, print an integer which is the number of watermelon candies xiaoxin‘s leader needs to buy after mod 1,000,000,007.

Sample Input

3
aa
aabb
a

Sample Output

1
2
1

Hint

题意

给你一个串,你可以改变字符位置

问你能够形成多少种回文串。

题解:

高中一个元素中有重复的,A(n)/A(a1)/A(a2)……,还学习了个逆元问题

技术分享
 1 #include <iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<set>
 6 #include<map>
 7 #include<queue>
 8 #include<vector>
 9 using namespace std;
10 const int mod = 1e9+7;
11 typedef long long ll;
12 char s[1111];
13 int a[30];
14 ll quick_pow(ll a, ll b) {
15     ll ans = 1;
16     for (; b; b /= 2, a = (a * a) % mod)
17         if (b & 1) ans = (ans * a) % mod;
18     return ans;
19 }
20 
21 ll A(ll n){
22     ll sum = 1;
23     for(long long i = 1; i<=n; i++){
24         sum = (i*sum)%mod;
25     }
26     return sum;
27 }
28 void input(){
29     int t;
30     scanf("%d",&t);
31     while(t--){
32             scanf("%s",s);
33         memset(a,0,sizeof(a));
34         int len = strlen(s);
35         for(int i = 0; i<len; i++){
36             a[s[i]-a+1]++;
37         }
38         int count = 0;
39         ll sum = 0;
40         for(int i = 1; i<=26; i++){
41             if(a[i]%2 == 1) count++;
42             a[i]/=2;
43             sum += a[i];
44         }
45 
46         if(count>1) printf("0\n");
47         else{
48             sum = A(sum);
49             for(int i = 1; i<=26; i++){
50                 sum = sum * quick_pow(A(a[i]), mod - 2) % mod;
51             }
52             printf("%I64d\n",sum);
53         }
54     }
55 }
56 int main()
57 {
58     input();
59     return 0;
60 }
卷珠帘

 

3月27日-?

原文:http://www.cnblogs.com/littlepear/p/5327388.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!