首页 > 编程语言 > 详细

排序算法之快速选择排序

时间:2016-03-30 00:04:34      阅读:208      评论:0      收藏:0      [点我收藏+]

---恢复内容开始---

  接算法的上一系列,在前几篇博客中,已经分析了 交换算法(冒泡排序,快速排序)、插入算法(直接插入排序,希尔排序),这一系列我们谈谈选择排序。

  选择排序分为两种,一种是直接选择排序,一种是堆排序,下面我们看 直接选择排序:

  百度百科:

    选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,

    存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法

    (比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面)

     直接选择排序的基本思想是:

    即首先我们定义一个 n个元素的数组R[1,n],可以称之为 无序区,随之我们在定义一个有序区,且为空。

    1、第1趟排序 在无序区中,选出最小的元素,并记录的它的下标,我们记为R[K],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别

      变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。

    2、第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R[i..n](1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录R[k],

            将它与无序区的第1个记录R[i]交换,使R[1..i]和R[i+1..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。

    这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
   时间复杂度

        首先我们选择排序的交换操作介于 0 和 (n - 1) 次之间。选择排序的比较操作为 n (n - 1) / 2 次之间。选择排序的赋值操作介于 0 和 3 (n - 1) 次之间。

      比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2。交换次数O(n),
        最好情况是,已经有序,交换0次;最坏情况交换n-1次,逆序交换n/2次。交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,
      n值较小时,选择排序比冒泡排序快。

    稳定性:

     选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,

     直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果一个元素比当前元素小,

         而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。

      比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中两个5的相对前后顺序就被破坏了,

      所以选择排序是一个不稳定的排序算法。

     代码解析:

       

public static void sort(int a[]){
        if(a ==null || a.length<=0){
            return;
        }
        int minary;  //定义一个最下坐标
        int temp = 0; //定义一个临时变量   
        for(int i =0;i<a.length-1;i++){
             minary = i;  //  将最小下标附一个初始值
             for(int j =i+1;j<a.length;j++){  // 遍历无序区 的元素
                 if(a[j]<a[minary]){    
                     minary = j;     
                 }
             }
             if(minary != i){
                 temp = a[i];
                 a[i] = a[minary];
                 a[minary] =temp;
             }
        }
    }

  

 

 

 

---恢复内容结束---

排序算法之快速选择排序

原文:http://www.cnblogs.com/gzd-123/p/5335078.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!