首页 > 其他 > 详细

GCD hdu1695容斥原理

时间:2014-04-23 10:43:16      阅读:565      评论:0      收藏:0      [点我收藏+]

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833


Problem Description
Given 5 integers: a, b, c, d, k, you‘re to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you‘re only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

 

Output
For each test case, print the number of choices. Use the format in the example.
 

 

Sample Input
2 1 3 1 5 1 1 11014 1 14409 9
 

 

Sample Output
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5106    Accepted Submission(s): 1833


Problem Description
Given 5 integers: a, b, c, d, k, you‘re to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you‘re only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

 

Output
For each test case, print the number of choices. Use the format in the example.
 

 

Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 

 

Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 
 
bubuko.com,布布扣
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #include <math.h>
 5 #include <algorithm>
 6 #include <vector>
 7 using namespace std;
 8 vector<int>q[110000];
 9 long long a[110000]={0};
10 int bb;
11 void init()
12 {
13     int i,j;
14     for(i=0; i<110000; i++)a[i]=i,q[i].clear();
15     for(i=2; i<110000; i+=2)
16         a[i]/=2,q[i].push_back(2);
17     for(i=3; i<110000; i+=2)
18         if(a[i]==i)
19             for(j=i; j<110000; j+=i)
20                 a[j]=a[j]/i*(i-1),q[j].push_back(i);
21     for(i=1; i<110000; i++)
22         a[i]+=a[i-1];
23 }
24 int fun(int x,int y)
25 {
26     int i,cnt=0;
27     int sum=1;
28     for(i=0;i<q[y].size();i++)
29     {
30         if(x&(1<<i))
31         {
32             sum*=q[y][i];
33             cnt++;
34         }
35     }
36     if(cnt&1)
37     return bb/sum;
38     else return -(bb/sum);
39 }
40 long long work(int x)
41 {
42     int i;
43     long long sum=0;
44     for(i=1;i<(1<<q[x].size());i++)
45     {
46         sum+=fun(i,x);
47     }
48     return bb-sum;
49 }
50 int main()
51 {
52     init();
53     int i,t,j,aa,c,d,k;
54     long long ans;
55     scanf("%d",&t);
56     for(i=1; i<=t; i++)
57     {
58         scanf("%d%d%d%d%d",&aa,&bb,&c,&d,&k);
59         if(bb>d)swap(bb,d);
60         if(k)
61         bb/=k,d/=k;
62         else
63         {
64              printf("Case %d: %d\n",i,0);
65              continue;
66         }
67         ans=a[bb];
68         for(j=bb+1; j<=d; j++)
69         {
70             ans+=work(j);
71         }
72         printf("Case %d: %I64d\n",i,ans);
73     }
74 }
View Code

 

GCD hdu1695容斥原理,布布扣,bubuko.com

GCD hdu1695容斥原理

原文:http://www.cnblogs.com/ERKE/p/3682068.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!