最近在看APUE第10章中关于system函数的POSIX.1的实现。关于POSIX.1要求system函数忽略SIGINT和SIGQUIT,并且阻塞信号SIGCHLD的论述,理解得不是很透彻,本文就通过实际的实例来一探究竟吧。
一、为什么要阻塞SIGCHLD信号
#include <stdlib.h>
int system(const char *command);
函数工作大致流程:system()函数先fork一个子进程,在这个子进程中调用/bin/sh -c来执行command指定的命令。/bin/sh在系统中一般是个软链接,指向dash或者bash等常用的shell,-c选项是告诉shell从字符串command中读取要执行的命令(shell将扩展command中的任何特殊字符)。父进程则调用waitpid()函数来为变成僵尸的子进程收尸,获得其结束状态,然后将这个结束状态返回给system()函数的调用者。
知道了以上基本知识点,也就好理解为什么偏偏是SIGCHLD信号了,而不是其他的信号:因为fork的子进程结束后,内核会向其父进程发送SIGHLD信号,即system()函数的调用者。
那么为什么在调用system()函数,运行command指定的命令时要阻塞SIGCHLD这个信号呢? 接下来我们就通过两个不同的system版本对比运行的结果,从而找到阻塞SIGCHLD信号的真正原因。
先来具体看看这两个不同的system函数实现版本:
system_without_signal.c:
system_with_signal.c
好,接下来具体看一个例子:
在这个例子中,我们调用的是system_without_signal,即不处理信号的system实现版本,并且调用者还设置了SIGCHLD的信号处理函数。好,基于这些条件,接下来我们考虑两种情形:
情形1:在子进程正在运行指定程序时,或者说在子进程结束之前,父进程中的waitpid阻塞在那里。
这种情形下,一旦子进程结束,内核会向应用程序递送SIGCHLD信号,运行信号处理函数,在信号处理函数中调用wait系列函数,那么现在问题来了:究竟是信号处理函数中的wait系列函数还是system_without_signal中的waitpid为子进程收尸呢? 答案是未知的。因为信号本身是异步的,我们掌控不了(在我的系统中,waitpid还总能正确的获取子进程退出状态,而在信号处理函数中的wait却返回-1,errno设置为ECHLD,表明没有可收尸的子进程,见下图。但是,在你的系统中,结果也许就是相反的噢)。所以,在这种情形下,我们得出的结论是:尽管system函数完成了其任务(正确执行了我们指定的程序),但却有可能返回-1。很显然,这不是我们希望发生的。
情形2:在一个繁忙的系统中,很可能在调用waitpid之前子进程就已经结束了,此时内核会向父进程递送SIGCHLD信号。
在这种情形下,问题就更明显了。在调用waitpid之前就已经调用了SIGCHLD信号的信号处理函数,信号处理函数中的wait函数为子进程收了尸,那么接下来的waitpid不就获取不了子进程的退出状态了吗? 事实也的确如此!我们可以在waitpid之前调用加个sleep来模拟系统负荷重的情形,会发现waitpid会出错,返回-1,errno设置为ECHLD,表明没有可收尸的子进程,最终system函数返回-1。所以,在这种情形下,我们得出的结论是:尽管system函数完成了其任务(正确执行了我们指定的程序),但却一直返回-1。很显然,这也不是我们希望发生的。
如果将上面例子中的system_without_signal替换成system_with_signal,那么system函数在调用fork之前就已经阻塞了SIGCHLD信号的话,那么就不会出现上述两种情况了。因为阻塞了SIGCHLD信号,那么不管system函数创建的子进程什么时候结束,即不管SIGCHLD信号什么时候来,在没有解除阻塞之前,是不会处理该信号的,即SIGCHLD信号是未决的。所以,无论如何,waitpid都会正确获取子进程的退出状态。只有在最后调用sigprocmask时,系统才会解除对SIGCHLD的阻塞。解除阻塞后,这才调用信号处理函数,不过这次信号处理函数中的wait会出错,返回-1,errno设置为ECHLD,表明没有可收尸的子进程。那么system函数就能正确的返回子进程的退出状态了。
看到这里,你可能会说,问题都是SIGCHLD信号处理函数中的wait惹的祸,如果去掉SIGCHLD信号处理函数中的wait函数,不就不会带来上述的两个问题了吗? 我的答案是:的确可以避免上述两个问题,即system函数可以正确的获取子进程的退出状态。但是这样做还是会有问题的:我们先不管在SIGCHLD信号处理函数中不调用wait系列函数这种不正统的做法,我们在这里考虑这样一种情形:如果信号处理函数需要运行一分钟的时间才返回(实际编程中,信号处理函数要尽量短噢,这里只是一种极端的假设),那么system函数岂不是也要阻塞一分钟才能返回?因为如果不阻塞SIGCHLD信号并且主进程注册了SIGCHLD信号处理函数(未调用wait系列函数),那么就需要等主进程的信号处理函数返回后waitpid才能接受到子进程的退出状态,也就是信号处理函数需要运行多长时间,那么system也就需要这么多时间才能返回。一个函数的运行受到外界不确定因素的影响,这种情形还是应该避免的。所以在调用system函数的时候阻塞SIGCHLD,这样在执行期间信号被阻塞就不会调用信号处理函数了,system中的waitpid就能"及时"地获取到子进程的状态。-- 但是仔细想想,其实system函数还是避免不了这种情形的,因为在最后调用sigprocmask解除阻塞时(一般在sigprocmask返回之前,就至少递送一个阻塞的信号),还是会调用信号处理函数,system依然会阻塞,唯一的不同是,这种情况下waitpid是在调用信号处理函数之前就获取了子进程的退出状态,避免了多线程的诸多影响。所以,在平时的编程实践当中,信号处理函数要尽量的短,这样才不会对其他函数造成不必要的未知影响。
好,稍微总结一下:
system函数之所以阻塞SIGCHLD,是为了保证system函数能够正确获取子进程的退出状态,并返回给system的调用者。
由此我们也可以引申出以下结论:
如果以后要写一个函数,函数中fork了一个子进程,并且定义的函数要得到子进程的一些信息,例如子进程的ID、子进程的终止状态等,而该函数的调用者所注册的SIGCHLD信号处理函数会影响这个函数获取这些信息,因此为了避免该函数在获取这些信息之前,由于子进程的终止触发SIGCHLD信号而先调用信号处理函数,在fork之前应该将SIGCHLD信号阻塞,在函数正确获取相关信息后,才对SIGCHLD信号解除阻塞。
二、为什么忽略SIGINT和SIGQUIT
关于这点,APUE的解释已经很明白了:因为由system执行的命令可能是交互式命令(例如ed程序),以及因为system的调用者在指定的命令执行期间放弃了对程序的控制(waitpid阻塞在那里),等待该执行程序的结束,所以system的调用者就不应该接收SIGINT和SIGQUIT信号,而只由子进程接收,这也是在子进程中一开始恢复SIGINT和SIGQUIT信号的原因。其实说白了,还是因为希望获取子进程的退出状态不受到外界干扰。
三、system函数的返回值
很多人不推荐使用system函数,是因为它的返回值很多人没有弄清楚。
(1)当参数command是NULL的时候
在参数为NULL的情况下,system函数的返回值很简单明了,只有0和1。返回1,表明系统的命令处理程序,即/bin/sh是可用的。相反,如果命令处理程序不可用,则返回0。我们可以通过一个简单的实验来验证下这个结论:
在我的系统上通过ls -l /bin/sh可以看出/bin/sh是个软链接,指向/bin/dash这个SHELL,我们可以通过unlink命令先取消这个软链接,会发现程序返回0,如果再次建立这个软链接,则system返回1.
(2)当参数command不是NULL的时候
当参数不为NULL的时候,情况有些小复杂,根据APUE这里可以分为以下三种情况:
(2.1)如果fork等系统调用失败,或者waitpid函数发生除EINTR外的错误时,system返回-1
这种情况下,我们没有办法了,只能检测errno的值来判断是哪个系统调用出错以及出错的原因!
那么为什么要排除waitpid发生EIINTR呢? 对于这个问题,我们可以假设system函数的调用者设置了SIGUSR1信号的处理函数,那么当waitpid阻塞在那里时,向程序发送SIGUSR1信号,则waitpid会返回-1,errno被设置为EINTR。所以应该排除EINTR错误值,否则就获取不到/bin/sh的退出状态了。
(2.2)一切致使execl失败的情况下,system返回127
致使execl失败的原因应该只有两个:/bin/sh不存在,再者就是指定的shell命令是非法的。
测试结果:
第一次返回127是因为非法的指令,第二次却是/bin/sh不存在导致的。
那么现在的问题是:如果指定的指令执行成功,且指令的返回值正好也是127,那么如何分辨是什么原因呢(例如上述程序中的是system("exit 127"))? 貌似没有办法哦,所以我们在程序中尽量避免使用127作为返回值。
(2.3)除此之外,system返回/bin/sh的终止状态
到这里,要强调的一点是:system返回的是/bin/sh的结束状态,而不是我们指定的指令的返回状态,尽管大部分时间它们是一样的。因为/bin/sh也有可能异常终止,例如人为的通过kill向其发送SIGKILL,那么/bin/sh退出状态就是9,而这跟指定的指令没有任何关系。
尽管有时参数command代表的指令执行过程中出了错,但这不会影响/bin/sh的正常退出,看下面实例:
其中的tsys请自行参考APUE。很明显,xxx目录是不存在的,ls执行过程中发生了错误,返回值为2,shell接收到的就是512(为什么是512,具体下篇文章),shell将该值转换成2后,最后由waitpid接收到该终止状态,即512,pr_exit打印的结果是2,正是ls返回的终止状态。
好了,通过之前的陈述我们知道system函数的返回值即shell的终止状态,这个终止状态是通过waitpid获得的,那么怎么解释这个返回值也就很明朗了 -- 使用检查waitpid返回值的那些宏就可以了,这也正式pr_exit实现的方式(参考APUE第8章)。
以上说的都是指令正常终止,那么如果是异常终止了?system函数返回值可以正确反映这种状态吗?我们通过实验来验证,先看信号SIGINT:
再来看下信号SIGQUIT:
可见通过system函数的返回值是不可能知道程序是异常终止的,上面的返回值之所以分别是130和131,是/bin/sh特殊处理的:当正在执行的指令是被信号终止的话,那么终止状态是128加上这个信号的编码。
这里提醒一下读者,如果你照着APUE的实验操作,即直接在终端键入Ctrl+C和Ctrl+\的话,你的结果可能与作者的是不一样的。我的结果就与作者的不一样:
你的系统上的结果也许和我的也不一样的,原因是不同的shell对信号的处理方式是不一样的,APUE作者使用的shell对SIGINT和SIGQUI的处理应该都是忽略,从我上面的结果可以看出,dash忽略信号SIGQUIT。未完待续!
参考链接:
http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=2078496
http://blog.chinaunix.net/uid-24774106-id-3048281.html?page=3
原文:http://www.cnblogs.com/lidabo/p/5344777.html