通过本教程,我们将会学会:
*.pcd
和*.ply
。recon_greedyProjection.cpp
,然后将下面的代码复制到文件中。/*
* GreedyProjection是根据点云进行三角化,而 poisson 则是对water-tight的模型进行重建,
* 所以形成了封闭mesh和很多冗余信息,需要对poisson的重建进行修剪才能得到相对正确的模型
*
*/
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
int main (int argc, char** argv)
{
// 确定文件格式
char tmpStr[100];
strcpy(tmpStr,argv[1]);
char* pext = strrchr(tmpStr, ‘.‘);
std::string extply("ply");
std::string extpcd("pcd");
if(pext){
*pext=‘\0‘;
pext++;
}
std::string ext(pext);
//如果不支持文件格式,退出程序
if (!((ext == extply)||(ext == extpcd))){
std::cout << "文件格式不支持!" << std::endl;
std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
return(-1);
}
//根据文件格式选择输入方式
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>) ; //创建点云对象指针,用于存储输入
if (ext == extply){
if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
PCL_ERROR("Could not read ply file!\n") ;
return -1;
}
}
else{
if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
PCL_ERROR("Could not read pcd file!\n") ;
return -1;
}
}
// 估计法向量
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud (cloud);
n.setInputCloud (cloud);
n.setSearchMethod (tree);
n.setKSearch (20);
n.compute (*normals); //计算法线,结果存储在normals中
//* normals 不能同时包含点的法向量和表面的曲率
//将点云和法线放到一起
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
//* cloud_with_normals = cloud + normals
//创建搜索树
pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
tree2->setInputCloud (cloud_with_normals);
//初始化GreedyProjectionTriangulation对象,并设置参数
pcl::GreedyProjectionTriangulation<pcl::PointNormal> gp3;
//创建多变形网格,用于存储结果
pcl::PolygonMesh triangles;
//设置GreedyProjectionTriangulation对象的参数
//第一个参数影响很大
gp3.setSearchRadius (1.5f); //设置连接点之间的最大距离(最大边长)用于确定k近邻的球半径【默认值 0】
gp3.setMu (2.5f); //设置最近邻距离的乘子,以得到每个点的最终搜索半径【默认值 0】
gp3.setMaximumNearestNeighbors (100); //设置搜索的最近邻点的最大数量
gp3.setMaximumSurfaceAngle(M_PI/4); // 45 degrees(pi)最大平面角
gp3.setMinimumAngle(M_PI/18); // 10 degrees 每个三角的最小角度
gp3.setMaximumAngle(2*M_PI/3); // 120 degrees 每个三角的最大角度
gp3.setNormalConsistency(false); //如果法向量一致,设置为true
//设置搜索方法和输入点云
gp3.setInputCloud(cloud_with_normals);
gp3.setSearchMethod(tree2);
//执行重构,结果保存在triangles中
gp3.reconstruct (triangles);
//保存网格图
pcl::io::savePLYFile("result.ply", triangles);
// Additional vertex information
//std::vector<int> parts = gp3.getPartIDs();
//std::vector<int> states = gp3.getPointStates();
// 显示结果图
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (0, 0, 0); //设置背景
viewer->addPolygonMesh(triangles,"my"); //设置显示的网格
viewer->addCoordinateSystem (1.0); //设置坐标系
viewer->initCameraParameters ();
while (!viewer->wasStopped ()){
viewer->spinOnce (100);
boost::this_thread::sleep (boost::posix_time::microseconds (100000));
}
return (0);
}
recon_greedyProjection.exe bunny.points.ply
,执行程序。得到如下图所示的结果。 原文:http://blog.csdn.net/xuezhisdc/article/details/51034272