python科学计算系列
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。
它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。
gallery展示页面的地址
该内容来自pyplot_tutorial官方文档
plt.plot()
你可能想知道,为啥设置了一下plt.plot([1,2,3,4]),咋就Y轴成了1-4,X轴成了1-3呢?这是因为,有种原因叫规定!matplotlib默认只有一组列表数据时为Y值,并自动生成X轴。由于Python范围默认从0开始,且具有与Y轴相同的长度,所以X轴数据为[0,1,2,3]。plt.ylabel(‘some numbers’),这是什么,不用解释吧。。
官方说plot()方法非常牛,接受任意数量数据:
然后,你又想了。这次plt.plot([1,2,3,4], [1,4,9,16], ‘ro’)是什么。。是这样的,对于plot()方法,有第三个参数,可以设定颜色和图类型。具体是传承自MATLAB,默认是’b-‘--一条坚实的蓝线。这里,红色圈圈‘ro’ – 太形象,容易记。
下面的例子是在一个命令中使用数组来绘制不同样式plot,自行看一下,易懂。
控制线条 – 具体见 matplotlib.lines
一张图上多字图 – subplot()
横纵坐标轴上的文字
以上内容太费劲,不够简单粗暴
模糊使用上手再说
matplotlib中的快速绘图的函数库可以通过如下语句载入:
import matplotlib.pyplot as plt
接下来调用figure创建一个绘图对象,并且使它成为当前的绘图对象
plt.figure(figsize=(8,4))
通过figsize参数可以指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素。
也可以不创建绘图对象直接调用接下来的plot函数直接绘图,matplotlib会自动创建一个绘图对象。
如果需要同时绘制多幅图表的话,可以是给figure传递一个整数参数指定图标的序号,如果所指定序号的绘图对象已经存在的话,将不创建新的对象,而只是让它成为当前绘图对象。
下面的两行程序通过调用plot函数在当前的绘图对象中进行绘图:
plt.plot(x,y,label=”
plt.plot(x,z,”b–”,label=”
plot函数的调用方式很灵活,第一句将x,y数组传递给plot之后,用关键字参数指定各种属性:
保存图表
还可以调用plt.savefig()将当前的Figure对象保存成图像文件,图像格式由图像文件的扩展名决定。下面的程序将当前的图表保存为“test.png”,并且通过dpi参数指定图像的分辨率为 120,因此输出图像的宽度为“8X120 = 960”个像素。
plt.savefig("test.png",dpi=120)
实际上不需要调用show()显示图表,可以直接用savefig()将图表保存成图像文件。使用这种方法可以很容易编写出 批量输出图表的程序。
绘制多轴图
一个绘图对象(figure)可以包含多个轴(axis),在Matplotlib中用轴表示一个绘图区域,可以将其理解为子图。上面的第一个例子中,绘图对象只包括一个轴,因此只显示了一个轴(子图(Axes) )。可以使用subplot函数快速绘制有多个轴的图表。subplot函数的调用形式如下:
subplot(numRows, numCols, plotNum)
subplot将整个绘图区域等分为numRows行和 numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。
下面的程序创建3行2列共6个轴,通过axisbg参数给每个轴设置不同的背景颜色。
for idx, color in enumerate(“rgbyck”):
plt.subplot(320+idx+1, axisbg=color)
plt.show()
如果希望某个轴占据整个行或者列的话,可以如下调用subplot:
plt.subplot(221) # 第一行的左图
plt.subplot(222) # 第一行的右图
plt.subplot(212) # 第二整行
plt.show()
当绘图对象中有多个轴的时候,可以通过工具栏中的Configure Subplots按钮,交互式地调节轴之间的间距和轴与边框之间的距离。如果希望在程序中调节的话,可以调用subplots_adjust函数,它有left, right, bottom, top, wspace, hspace等几个关键字参数,这些参数的值都是0到1之间的小数,它们是以绘图区域的宽高为1进行正规化之后的坐标或者长度。
subplot()返回它所创建的Axes对象,可以将它用变量保存起来,然后用sca()交替让它们成为当前Axes对象,并调用plot()在其中绘图。如果需要同时绘制多幅图表,可以给figure()传递一个整数参数指定Figure对象的序号,如果序号所指定的figure对象已经存在,将不创建新的对象,而只是让它成为当前的Figure对象。下面的程序演示了如何依次在不同图表的不同 子图中绘制曲线。
首先通过figure()创建了两个图表,它们的序号分别为1和2。然后在图表2中创建了上下 并排的两个子图,并用变量ax1和ax2保存。
import numpy as np
import matplotlib.pyplot as plt
plt.figure(1) # 创建图表1
plt.figure(2) # 创建图表2
ax1 = plt.subplot(211) # 在图表2中创建子图1
ax2 = plt.subplot(212) # 在图表2中创建子图2
x = np.linspace(0, 3, 100)
在循环中,先调用figure(1)让图表1成为当前图表,并在其中绘图。然后调用sca(ax1) 和sca(ax2)分别让子图ax1和ax2成为当前子图,并在其中绘图。当它们成为当前子图时,包含它们的图表2也自动成为当前图表,因此不需要调用figure(2)依次在图表1和图表2的两 个子图之间切换,逐步在其中添加新的曲线
for i in xrange(5):
plt.figure(1) # 选择图表1
plt.plot(x, np.exp(i*x/3))
plt.sca(ax1) # 选择图表2的子图1
plt.plot(x, np.sin(i*x))
plt.sca(ax2) # 选择图表2的子图2
plt.plot(x, np.cos(i*x))
plt.show()
坐标轴设定
Axis容器包括坐标轴的刻度线、刻度标签、坐标网格以及坐标轴标题等内容。刻度包括主刻度和副刻度,分别通过get_major_ticks()和get_minor_ticks()方法获得。每个刻度线都是一 个XTick或YTick对象,它包括实际的刻度线和刻度标签。为了方便访问刻度线和文本,Axis 对象提供了 get_ticklabels()和get_ticklines()方法,可以直接获得刻度标签和刻度线。
原文:http://blog.csdn.net/baibaibai66/article/details/51260759