首页 > 其他 > 详细

汽车分类预测——多元分类

时间:2016-04-29 18:20:33      阅读:319      评论:0      收藏:0      [点我收藏+]

Dataset

本文的数据集包含了各种与汽车相关的信息,如点击的位移,汽车的重量,汽车的加速度等等信息,我们将通过这些信息来预测汽车的来源:北美,欧洲或者亚洲,这个问题中类标签有三个,不同于之前的二元分类问题。

  • 由于这个数据集不是csv文件,而是txt文件,并且每一列的没有像csv文件那样有一个行列索引(不包含在数据本身里面),而txt文件只是数据。因此采用一个通用的方法read_table()来读取txt文件:

mpg – Miles per gallon, Continuous.
cylinders – Number of cylinders in the motor, Integer, Ordinal, and Categorical.(汽缸数 )
displacement – Size of the motor, Continuous.
horsepower – Horsepower produced, Continuous.
weight – Weights of the car, Continuous.
acceleration – Acceleration, Continuous.
year – Year the car was built, Integer and Categorical.(每年生产量)
origin – 1=North America, 2=Europe, 3=Asia. Integer and Categorical
car_name – Name of the Car, will not be needed in this analysis.

  • 通过read_table读取数据后,返回的auto是个DataFrame对象
import pandas
import numpy as np

# Filename
auto_file = "auto.txt"

# Column names, not included in file
names = [‘mpg‘, ‘cylinders‘, ‘displacement‘, ‘horsepower‘, ‘weight‘, ‘acceleration‘, 
         ‘year‘, ‘origin‘, ‘car_name‘]

# Read in file 
# Delimited by an arbitrary number of whitespaces 
auto = pandas.read_table(auto_file, delim_whitespace=True, names=names)

# Show the first 5 rows of the dataset
print(auto.head())
‘‘‘
  mpg  cylinders  displacement horsepower  weight  acceleration  year  0   18          8           307      130.0    3504          12.0    70   
1   15          8           350      165.0    3693          11.5    70   
2   18          8           318      150.0    3436          11.0    70   
3   16          8           304      150.0    3433          12.0    70   
4   17          8           302      140.0    3449          10.5    70   

   origin                   car_name  
0       1  chevrolet chevelle malibu  
1       1          buick skylark 320  
2       1         plymouth satellite  
3       1              amc rebel sst  
4       1                ford torino  
‘‘‘
print(auto.describe())
‘‘‘
              mpg   cylinders  displacement       weight  acceleration  count  398.000000  398.000000    398.000000   398.000000    398.000000   
mean    23.514573    5.454774    193.425879  2970.424623     15.568090   
std      7.815984    1.701004    104.269838   846.841774      2.757689   
min      9.000000    3.000000     68.000000  1613.000000      8.000000   
25%     17.500000    4.000000    104.250000  2223.750000     13.825000   
50%     23.000000    4.000000    148.500000  2803.500000     15.500000   
75%     29.000000    8.000000    262.000000  3608.000000     17.175000   
max     46.600000    8.000000    455.000000  5140.000000     24.800000   

             year      origin  
count  398.000000  398.000000  
mean    76.010050    1.572864  
std      3.697627    0.802055  
min     70.000000    1.000000  
25%     73.000000    1.000000  
50%     76.000000    1.000000  
75%     79.000000    2.000000  
max     82.000000    3.000000  
‘‘‘

Clean Dataset

  • 由于auto有很多缺省值和无关的列信息,因此需要先做数据清洗:首先car_name 是无关的属性,其次horsepower 这个属性在统计分析时没出现,可能是因为有缺失值,观察数据集发现确实是有缺失,缺失的值用?表示的。
# Delete the column car_name
del auto["car_name"]
# Remove rows with missing data
auto = auto[auto["horsepower"] != ‘?‘]

Categorical Variables

此处的特征值有的连续性数据,有的是枚举型数据,比如类标签是{1,2,3}是个枚举型数据。倘若我们的特征中有枚举型数据,比如:根据球的颜色判断球的大小,给的球的颜色{红,緑,蓝},那么如果简单的定义红=1,緑=2,蓝=3,这样是不对的。因为这默认了緑是红的两倍,而原本并不是这样的关系。我们应该重新定义2个属性{红,緑}。一个红球的特征向量是[1,0],緑球的特征向量是[0,1],而篮球的特征向量是[0,0],这些被称为虚拟变量并且在实践中经常使用。

Using Dummy Variables

在本例中,cylinders,year,origin都是分类变量(枚举型)。因此cylinders,year这两个属性不能直接应用到模型中去。year这个属性表示每年的生产量,由于每年生产量不是一个任意数,可能是一个枚举型的数字(我们没有充足的信息表明),因此将其看为分类变量是比较安全的方法,所以必须要用到虚拟变量。比如汽缸数的有5类{3,4,5,6,8},因此可以设置4个虚拟变量。

  • cylinders_3 – Does the car have 3 cylinders? either a 0 or a 1
  • cylinders_4 – Does the car have 4 cylinders? either a 0 or a 1
  • cylinders_5 – Does the car have 5 cylinders? either a 0 or a 1
  • cylinders_6 – Does the car have 6 cylinders? either a 0 or a 1
  • 由于8个气缸可以通过其他4个变量表示出来[0,0,0,0],因此不设置这个变量。
# input a column with categorical variables
def create_dummies(var):
    # 获得该属性的取值,然后将其排序
    var_unique = var.unique()
    var_unique.sort()

    dummy = pandas.DataFrame()

    # 最后一个取值不用设置为虚拟变量
    for val in var_unique[:-1]:
        # d是一个布尔型数组,比如,所有为3个气缸的行值为True
        d = var == val

        # astype(int)将布尔型数据转换为1(true),0(False)数据
        dummy[var.name + "_" + str(val)] = d.astype(int)

    # return dataframe with our dummy variables
    return(dummy)

# lets make a copy of our auto dataframe to modify with dummy variables
modified_auto = auto.copy()

# make dummy varibles from the cylinder categories
cylinder_dummies = create_dummies(modified_auto["cylinders"])

# merge dummy varibles to our dataframe
modified_auto = pandas.concat([modified_auto, cylinder_dummies], axis=1)

# delete cylinders column as we have now explained it with dummy variables
del modified_auto["cylinders"]

print(modified_auto.head())
# make dummy varibles from the cylinder categories
year_dummies = create_dummies(modified_auto["year"])

# merge dummy varibles to our dataframe
modified_auto = pandas.concat([modified_auto, year_dummies], axis=1)

# delete cylinders column as we have now explained it with dummy variables
del modified_auto["year"]

Multiclass Classification

多类别分类技术可以分为以下几种:

  • 一对多法(one-versus-rest,简称1-v-r)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样就将多元分类问题转化为二元分类问题。这样k个类别的样本就构造出了k个分类器。分类时将未知样本分类为具有最大分类函数值的那类。

假如我有四类要划分(也就是4个Label),它们是A、B、C、D。于是我在抽取训练集的时候,分别抽取A所对应的向量作为正集,B,C,D所对应的向量作为负集;B所对应的向量作为正集,A,C,D所对应的向量作为负集;C所对应的向量作为正集,
A,B,D所对应的向量作为负集;D所对应的向量作为正集,A,B,C所对应的向量作为负集,这四个训练集分别进行训练,然后的得到四个训练结果文件,在测试的时候,把对应的测试向量分别利用这四个训练结果文件进行测试,最后每个测试都有一个结果f1(x),f2(x),f3(x),f4(x).于是最终的结果便是这四个值中最大的一个。
p.s.: 这种方法有种缺陷,因为训练集是1:M,这种情况下存在biased.因而不是很实用.

  • 一对一法(one-versus-one,简称1-v-1)。其做法是在任意两类样本之间设计一个二元分类器,因此k个类别的样本就需要设计k(k-1)/2个分类器。当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。

  • 将数据集划分为训练集和测试机:

# get all columns which will be used as features, remove ‘origin‘
features = np.delete(modified_auto.columns, modified_auto.columns == ‘origin‘)

# shuffle data
shuffled_rows = np.random.permutation(modified_auto.index)

# Select 70% of the dataset to be training data
highest_train_row = int(modified_auto.shape[0] * .70)
# Select 70% of the dataset to be training data
train = modified_auto.loc[shuffled_rows[:highest_train_row], :]

# Select 30% of the dataset to be test data
test = modified_auto.loc[shuffled_rows[highest_train_row:], :]

Training A Multiclass Logistic Regression

from sklearn.linear_model import LogisticRegression

# find the unique origins
unique_origins = modified_auto["origin"].unique()
unique_origins.sort()
# 由于有三个类别,采用一对多,总共三个模型
models = {}

for origin in unique_origins:
    models[origin] = LogisticRegression()

    X_train = train[features]
    # 每次都要修改训练集的标签数据,将当前类的标签设置为1
    y_train = (train["origin"] == origin).astype(int)

    models[origin].fit(X_train, y_train)

# testing_probs用来收集每个分类器的预测概率
testing_probs = pandas.DataFrame(columns=unique_origins)
for origin in unique_origins:
    X_test = test[features]   
    #一个测试集要放到三个模型中求属于1的概率,[:,1]返回的是属于1的概率,[:,0]是属于0的概率
    testing_probs[origin] = models[origin].predict_proba(X_test)[:,1]

Choose The Origin

  • 找到概率最大的列标签
predicted_origins = testing_probs.idxmax(axis=1)

Confusion Matrix

技术分享

# Remove pandas indicies
predicted_origins = predicted_origins.values
origins_observed = test[‘origin‘].values

# fill in this confusion matrix
confusion = pandas.DataFrame(np.zeros(shape=(unique_origins.shape[0], unique_origins.shape[0])), 
                             index=unique_origins, columns=unique_origins)
# Each unique prediction
for pred in unique_origins:
    # Each unique observation
    for obs in unique_origins:
        # Check if pred was predicted
        t_pred = predicted_origins == pred
        # Check if obs was observed
        t_obs = origins_observed == obs
        # True if both pred and obs 
        t = (t_pred & t_obs)
        # Count of the number of observations with pred and obs
        confusion.loc[pred, obs] = sum(t)
print(confusion)
‘‘‘
    1   2   3
1  74   5   0
2   0  13   0
3   0   1  25
‘‘‘
# Remove pandas indicies
predicted_origins = predicted_origins.values
origins_observed = test[‘origin‘].values

# fill in this confusion matrix
confusion = pandas.crosstab(predicted_origins, origins_observed)
print(confusion)
‘‘‘
col_0   1   2   3
row_0            
1      74   5   0
2       0  13   0
3       0   1  25
‘‘‘

Confusion Matrix Cont

  • 对于1来说混淆矩阵是这样的:
‘‘‘
col_0   1   0 
row_0            
1      74   5  
0      0    39
‘‘‘
  • 对于2来说混淆矩阵是这样的:
‘‘‘
col_0   2   0 
row_0            
2      13   0  
0      6    99
‘‘‘
  • 对于3来说混淆矩阵是这样的:
‘‘‘
col_0   3   0 
row_0            
3      79   0  
0      1    25
‘‘‘
  • 计算2的FP:
fp2 = confusion.ix[2,[1,3]].sum()
print(fp2)
‘‘‘
0
‘‘‘

Average Accuracy

  • 下列公式就是计算多元分类问题的精度公式,其中l表示的是类的个数:

技术分享

# The confusion DataFrame is in memory# The confusion DataFrame is in memory
# The total number of observations in the test set
n = test.shape[0]
# Variable to store true predictions
sumacc = 0
# Loop over each origin
for i in confusion.index:
    # True Positives
    tp = confusion.loc[i, i]
    # True negatives
    # 计算除去第i行第i列的其他所有元素之和
    tn = confusion.loc[unique_origins[unique_origins != i], unique_origins[unique_origins != i]]
    # Add the sums
    sumacc += tp.sum() + tn.sum().sum()

# Compute average accuracy
denominator = n*unique_origins.shape[0]
avgacc = sumacc/denominator
‘‘‘
avgacc :0.96610169491525422
‘‘‘

Precision And Recall

  • 多元分类的查准率:
    技术分享

  • 多分类的查全率:
    技术分享

# Variable to add all precisions
ps = 0
# Loop through each origin (class)
for j in confusion.index:
    # True positives
    tps = confusion.ix[j,j]
    # Positively predicted for that origin 
    positives = confusion.ix[j,:].sum()
    # Add to precision
    ps += tps/positives

# divide ps by the number of classes to get precision 
precision = ps/confusion.shape[0]
print(‘Precision = {0}‘.format(precision))
‘‘‘
Precision = 0.9660824407659852
‘‘‘

rcs = 0
for j in confusion.index:
    # Current number of true positives
    tps = confusion.ix[j,j]
    # True positives and false negatives
    origin_count = confusion.ix[:,j].sum()
    # Add recall
    rcs += tps/origin_count

# Compute recall
recall = rcs/confusion.shape[0]

F-Score

银行信用卡批准——模型评估ROC&AUC一文中,画出了查准率和查全率的关系图,可以发现当查全率增加时,查准率会降低,而我们期望的是这两个值都尽可能的大,因此需要找到这两个值之间的一个平衡点,因此产生了F度量,F的取值在0到1之间,当F=1是是最完美的模型。其公式如下:

  • 对于每一个类别计算一个Fi值:

技术分享

  • 然后计算总的F值:

技术分享

# Variable to add all precisions
scores = []
# Loop through each origin (class)
for j in confusion.index:
    # True positives
    tps = confusion.ix[j,j]
    # Positively predicted for that origin 
    positives = confusion.ix[j,:].sum()
    # True positives and false negatives
    origin_count = confusion.ix[:,j].sum()
    # Compute precision
    precision = tps / positives
    # Compute recall
    recall = tps / origin_count
    # Append F_i score
    fi = 2*precision*recall / (precision + recall)
    scores.append(fi)
fscore = np.mean(scores)
‘‘‘
fscore : 0.92007080610021796
‘‘‘

Metrics With Sklearn

前面都是自己计算这些度量值,然而sklearn中有內建的函数帮忙计算。比如:precision_score, recall_score, 以及 f1_score这三个函数,他们需要输入最基本的两个参数:真实的分类,预测的分类,然后是一些可选参数,其中重点关注average这个参数:

技术分享

# Import metric functions from sklearn
from sklearn.metrics import precision_score, recall_score, f1_score

# Compute precision score with micro averaging
pr_micro = precision_score(test["origin"], predicted_origins, average=‘micro‘)
pr_weighted = precision_score(test["origin"], predicted_origins, average=‘weighted‘)
rc_weighted = recall_score(test["origin"], predicted_origins, average=‘weighted‘)
f_weighted = f1_score(test["origin"], predicted_origins, average=‘weighted‘)

汽车分类预测——多元分类

原文:http://blog.csdn.net/zm714981790/article/details/51243955

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!