聚类是机器学习中的无监督学习方法的重要一种,近来看了周志华老师的机器学习,专门研究了有关于聚类的一章,收获很多,对于其中的算法也动手实现了一下。主要实现的包括比较常见的k均值聚类、密度聚类和层次聚类,这三种聚类方法上原理都不难,算法过程也很清晰明白。有关于原理可以参阅周志华老师的机器学习第九章,这里只做一下代码的实现。
运行环境是Python2.7+numpy,说实话,numpy坑还是挺多的,其实用Matlab可能会更简单。
k均值聚类,核心是是不断更新簇样本的质心。
#encoding=utf-8 __author__ = 'freedom' from numpy import* import matplotlib.pyplot as plt def loadDataSet(fileName): ''' 本函数用于加载数据 :param fileName: 数据文件名 :return:数据集,具有矩阵形式 ''' fr = open(fileName) dataSet = [] for line in fr.readlines(): curLine = line.strip().split('\t') inLine = map(float,curLine) # 利用map广播,是的读入的字符串变为浮点型 dataSet.append(inLine) return mat(dataSet) def getDistance(vecA,vecB): ''' 本函数用于计算欧氏距离 :param vecA: 向量A :param vecB: 向量B :return:欧氏距离 ''' return sqrt(sum(power(vecA-vecB,2))) def randCent(dataSet,k): ''' 本函数用于生成k个随机质心 :param dataSet: 数据集,具有矩阵形式 :param k:指定的质心个数 :return:随机质心,具有矩阵形式 ''' n = shape(dataSet)[1] # 获取特征数目 centRoids = mat(zeros((k,n))) for j in range(n): minJ = min(dataSet[:,j]) # 获取每个特征的最小值 rangeJ = float(max(dataSet[:,j]-minJ)) # 获取每个特征的范围 centRoids[:,j] = minJ + rangeJ*random.rand(k,1) # numpy下的rand表示随机生成k*1的随机数矩阵,范围0-1 return centRoids def kMeans(dataSet,k,disMens = getDistance,createCent = randCent): ''' 本函数用于k均值聚类 :param dataSet: 数据集,要求有矩阵形式 :param k: 指定聚类的个数 :param disMens: 求解距离的方式,除欧式距离还可以定义其他距离计算方式 :param createCent: 生成随机质心方式 :return:随机质心,簇索引和误差距离矩阵 ''' m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2))) # 要为每个样本建立一个簇索引和相对的误差,所以需要m行的矩阵,m就是样本数 centRoids = createCent(dataSet,k) # 生成随机质心 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): # 遍历所有样本 minDist = inf;minIndex = -1 # 初始化最小值 for j in range(k): # 遍历所有质心 disJI = disMens(centRoids[j,:],dataSet[i,:]) if disJI < minDist: minDist = disJI;minIndex = j # 找出距离当前样本最近的那个质心 if clusterAssment[i,0] != minIndex: # 更新当前样本点所属于的质心 clusterChanged = True # 如果当前样本点不属于当前与之距离最小的质心,则说明簇分配结果仍需要改变 clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k): ptsInClust = dataSet[nonzero(clusterAssment[:,0].A == cent)[0]] # nonzero 返回的是矩阵中所有非零元素的坐标,坐标的行数与列数个存在一个数组或矩阵当中 # 矩阵支持检查元素的操作,所有可以写成matrix == int这种形式,返回的一个布尔型矩阵,代表矩阵相应位置有无此元素 # 这里指寻找当前质心下所聚类的样本 centRoids[cent,:] = mean(ptsInClust,axis = 0) # 更新当前的质心为所有样本的平均值,axis = 0代表对列求平均值 return centRoids,clusterAssment def plotKmens(dataSet,k,clusterMeans): ''' 本函数用于绘制kMeans的二维聚类图 :param dataSet: 数据集 :param k: 聚类的个数 :return:无 ''' centPoids,assment = clusterMeans(dataSet,k) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(dataSet[:,0],dataSet[:,1],c = 'blue') ax.scatter(centRoids[:,0],centRoids[:,1],c = 'red',marker = '+',s = 70) plt.show() def binKMeans(dataSet, k, distMeas = getDistance): ''' 本函数用于二分k均值算法 :param dataSet: 数据集,要求有矩阵形式 :param k: 指定聚类个数 :param distMeas: 求解距离的方式 :return:质心,簇索引和误差距离矩阵 ''' m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2))) centRoids0 = mean(dataSet,axis = 0).tolist()[0] # 初始化一个簇,只有一个质心,分量就是就是所有特征的均值 # 注意,tolist函数用于将矩阵转化为一个列表,此列表为嵌套列表 #print centRoids0 centList = [centRoids0] for j in range(m): # 遍历所有样本,计算所有样本与当前质心的距离作为误差 clusterAssment[j,1] = distMeas(mat(centRoids0),dataSet[j,:])**2 while (len(centList) < k): # 循环条件为当前质心数目还不够指定数目 lowestSSE = inf for i in range(len(centList)): # 遍历所有质心 ptsCurrCluster = dataSet[nonzero(clusterAssment[:,0].A == i)[0],:] # 搜索到当前质心所聚类的样本 centroidsMat,splitClusterAss = kMeans(ptsCurrCluster,2,distMeas) # 将当前分割成两个簇 sseSplit = sum(splitClusterAss[:,1]) # 计算分裂簇后的SSE sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A != i)[0],1]) # 计算分裂之前的SSE if (sseSplit + sseNotSplit) < lowestSSE: # 如果分裂之后的SSE小,则更新 bestCent2Split = i bestNewCents = centroidsMat bestClustAss = splitClusterAss.copy() lowestSSE = sseSplit+sseNotSplit #重新编制簇的编号,凡是分裂后编号为1的簇,编号为质心列表长度,编号为0的簇,编号为最佳分裂质心的编号,以此更新 bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCent2Split centList[bestCent2Split] = bestNewCents[0,:].tolist()[0] # 添加分裂的质心到质心列表中 centList.append(bestNewCents[1,:].tolist()[0]) clusterAssment[nonzero(clusterAssment[:,0].A == bestCent2Split)[0],:] = bestClustAss return mat(centList),clusterAssment def biKmeans(dataSet, k, distMeas=getDistance): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2))) centroid0 = mean(dataSet, axis=0).tolist()[0] centList =[centroid0] #create a list with one centroid for j in range(m):#calc initial Error clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2 while (len(centList) < k): lowestSSE = inf for i in range(len(centList)): ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) print "sseSplit, and notSplit: ",sseSplit,sseNotSplit if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit print 'the bestCentToSplit is: ',bestCentToSplit print 'the len of bestClustAss is: ', len(bestClustAss) centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids centList.append(bestNewCents[1,:].tolist()[0]) clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE return mat(centList), clusterAssment密度聚类,基本思路就是将所有密度可达的点都归为一簇。
#encoding=utf-8 import numpy as np import kmeans as km import matplotlib.pyplot as plt def createDisMat(dataMat): m = dataMat.shape[0] n = dataMat.shape[1] distMat = np.mat(np.zeros((m,m))) # 初始化距离矩阵,这里默认使用欧式距离 for i in range(m): for j in range(m): if i == j: distMat[i,j] = 0 else: dist = km.getDistance(dataMat[i,:],dataMat[j,:]) distMat[i,j] = dist distMat[j,i] = dist return distMat def findCore(dataMat,delta,minPts): core = [] m = dataMat.shape[0] n = dataMat.shape[1] distMat = createDisMat(dataMat) for i in range(m): temp = distMat[i,:] < delta # 单独抽取矩阵一行做过滤,凡是小于邻域值的都被标记位True类型 ptsNum = np.sum(temp,1) # 按行加和,统计小于邻域值的点个数 if ptsNum >= minPts: core.append(i) # 满足条件,增加核心点 return core def DBSCAN(dataMat,delta,minPts): k = 0 m = dataMat.shape[0] distMat = createDisMat(dataMat) # 获取距离矩阵 core = findCore(dataMat,delta,minPts) # 获取核心点列表 unVisit = [1] * m # hash值作为标记,当某一位置的数据位1时,表示还未被访问,为0表示已经被访问 Q = [] ck = [] unVistitOld = [] while len(core) != 0: print 'a' unVistitOld = unVisit[:] # 保留原始的未被访问集 i = np.random.choice(core) # 在核心点集中随机选择样本 Q.append(i) # 加入对列Q unVisit[i] = 0 #剔除当前加入对列的数据,表示已经访问到了 while len(Q) != 0: print len(Q) temp = distMat[Q[0],:]<delta # 获取在此核心点邻域范围内的点集 del Q[0] ptsNum = np.sum(temp,1) if ptsNum >= minPts: for j in range(len(unVisit)): if unVisit[j] == 1 and temp[0,j] == True: Q.append(j) unVisit[j] = 0 k += 1 ck.append([]) for index in range(m): if unVistitOld[index] == 1 and unVisit[index] == 0: # 上一轮未被访问到此轮被访问到的点均要加入当前簇 ck[k-1].append(index) if index in core: # 在核心点集中清除当前簇的点 del core[core.index(index)] return ck def plotAns(dataSet,ck): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(dataSet[ck[0],0],dataSet[ck[0],1],c = 'blue') ax.scatter(dataSet[ck[1],0],dataSet[ck[1],1],c = 'red') ax.scatter(dataSet[ck[2],0],dataSet[ck[2],1],c = 'green') ax.scatter(dataSet[ck[3],0],dataSet[ck[3],1],c = 'yellow') #ax.scatter(centRoids[:,0],centRoids[:,1],c = 'red',marker = '+',s = 70) plt.show() if __name__ == '__main__': dataMat = km.loadDataSet("testSet.txt") # distMat = createDisMat(dataMat) # core = findCore(dataMat,1,5) # print distMat # print len(core) ck = DBSCAN(dataMat,2,15) print ck print len(ck) plotAns(dataMat,ck)
#encoding=utf-8 import numpy as np import DBSCAN as db import kmeans as km def calcDistByMin(dataMat,ck1,ck2): # 最小距离点作为簇间的距离 min = np.inf for vec1 in ck1: for vec2 in ck2: dist = km.getDistance(dataMat[vec1,:],dataMat[vec2,:]) if dist <= min: min = dist return min def calcDistByMax(dataMat,ck1,ck2): # 最大距离点作为簇间的距离 max = 0 for vec1 in ck1: for vec2 in ck2: dist = km.getDistance(dataMat[vec1,:],dataMat[vec2,:]) if dist >= max: max = dist return max def createDistMat(dataMat,calcDistType = calcDistByMin): # 生成初始的距离矩阵 m = dataMat.shape[0] distMat = np.mat(np.zeros((m,m))) for i in range(m): for j in range(m): listI = [i];listJ = [j] # 为配合距离函数的输入参数形式,在这里要列表化一下 distMat[i,j] = calcDistType(dataMat,listI,listJ) distMat[j,i] = distMat[i,j] return distMat def findMaxLoc(distMat,q): # 寻找矩阵中最小的元素并返回其位置,注意,这里不能返回相同的坐标 min = np.inf I = J = 0 for i in range(q): for j in range(q): if distMat[i,j] < min and i != j: min = distMat[i,j] I = i J = j return I,J def ANGES(dataMat,k,calcDistType = calcDistByMax): m = dataMat.shape[0] ck = [] for i in range(m): ck.append([i]) distMat = createDistMat(dataMat,calcDistType) q = m # 初始化点集个数 while q > k: i,j = findMaxLoc(distMat,q) #print i,j if i > j: i,j = j,i # 保证i<j,这样做是为了删除的是序号较大的簇 ck[i].extend(ck[j]) # 把序号较大的簇并入序号小的簇 del ck[j] # 删除序号大的簇 distMat = np.delete(distMat,j,0) # 在距离矩阵中删除该簇的数据,注意这里delete函数有返回值,否则不会有删除作用 distMat = np.delete(distMat,j,1) print distMat.shape for index in range(0,q-1): # 重新计算新簇和其余簇之间的距离 distMat[i,index] = calcDistType(dataMat,ck[i],ck[index]) distMat[i,index] = distMat[index,i] q -= 1 # 一个点被分入簇中,自减 return ck if __name__ == '__main__': dataMat = km.loadDataSet("testSet.txt") ck = ANGES(dataMat,4) print ck db.plotAns(dataMat,ck)
原文:http://blog.csdn.net/freedom098/article/details/51240795