当我们需要在子线程处理耗时的操作(例如访问网络,数据库的操作),而当耗时的操作完成后,需要更新UI,这就需要使用Handler来处理,因为子线程不能做更新UI的操作。Handler能帮我们很容易的把任务(在子线程处理)切换回它所在的线程。简单理解,Handler就是解决线程和线程之间的通信的。
使用的handler的两种形式:
1.在主线程使用handler;
2.在子线程使用handler。
在主线程使用handler的示例:
public class TestHandlerActivity extends AppCompatActivity {
private static final String TAG = "TestHandlerActivity";
private Handler mHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
//获得刚才发送的Message对象,然后在这里进行UI操作
Log.e(TAG,"------------> msg.what = " + msg.what);
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_handler_test);
initData();
}
private void initData() {
//开启一个线程模拟处理耗时的操作
new Thread(new Runnable() {
@Override
public void run() {
SystemClock.sleep(2000);
//通过Handler发送一个消息切换回主线程(mHandler所在的线程)
mHandler.sendEmptyMessage(0);
}
}).start();
}
在主线程使用handler很简单,只需在主线程创建一个handler对象,在子线程通过在主线程创建的handler对象发送Message,在handleMessage()方法中接受这个Message对象进行处理。通过handler很容易的从子线程切换回主线程了。
那么来看看在子线程中使用是否也是如此。
public class TestHandlerActivity extends AppCompatActivity {
private static final String TAG = "TestHandlerActivity";
//主线程中的handler
private Handler mHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
//获得刚才发送的Message对象,然后在这里进行UI操作
Log.e(TAG,"------------> msg.what = " + msg.what);
}
};
//子线程中的handler
private Handler mHandlerThread = null;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_handler_test);
initData();
}
private void initData() {
//开启一个线程模拟处理耗时的操作
new Thread(new Runnable() {
@Override
public void run() {
SystemClock.sleep(2000);
//通过Handler发送一个消息切换回主线程(mHandler所在的线程)
mHandler.sendEmptyMessage(0);
//在子线程中创建Handler
mHandlerThread = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
Log.e("sub thread","---------> msg.what = " + msg.what);
}
};
mHandlerThread.sendEmptyMessage(1);
}
}).start();
}
程序崩溃了。报的错误是没有在子线程调用Looper.prepare()的方法。而为什么在主线程中使用不会报错?通过源码的分析可以解析这个问题。
在子线程中正确的使用Handler应该是这样的。
public class TestHandlerActivity extends AppCompatActivity {
private static final String TAG = "TestHandlerActivity";
//主线程的Handler
private Handler mHandler = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
//获得刚才发送的Message对象,然后在这里进行UI操作
Log.e(TAG,"------------> msg.what = " + msg.what);
}
};
//子线程中的Handler
private Handler mHandlerThread = null;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_handler_test);
initData();
}
private void initData() {
//开启一个线程模拟处理耗时的操作
new Thread(new Runnable() {
@Override
public void run() {
SystemClock.sleep(2000);
//通过Handler发送一个消息切换回主线程(mHandler所在的线程)
mHandler.sendEmptyMessage(0);
//调用Looper.prepare()方法
Looper.prepare();
mHandlerThread = new Handler(){
@Override
public void handleMessage(Message msg) {
super.handleMessage(msg);
Log.e("sub thread","---------> msg.what = " + msg.what);
}
};
mHandlerThread.sendEmptyMessage(1);
//调用Looper.loop()方法
Looper.loop();
}
}).start();
}
可以看到,通过调用Looper.prepare()运行正常,handleMessage方法中就可以接收到发送的Message。
至于为什么要调用这个方法呢?去看看源码。
Handler的消息处理主要有五个部分组成,Message,Handler,Message Queue,Looper和ThreadLocal。首先简要的了解这些对象的概念
Message:Message是在线程之间传递的消息,它可以在内部携带少量的数据,用于线程之间交换数据。Message有四个常用的字段,what字段,arg1字段,arg2字段,obj字段。what,arg1,arg2可以携带整型数据,obj可以携带object对象。
Handler:它主要用于发送和处理消息的发送消息一般使用sendMessage()方法,还有其他的一系列sendXXX的方法,但最终都是调用了sendMessageAtTime方法,除了sendMessageAtFrontOfQueue()这个方法
而发出的消息经过一系列的辗转处理后,最终会传递到Handler的handleMessage方法中。
Message Queue:MessageQueue是消息队列的意思,它主要用于存放所有通过Handler发送的消息,这部分的消息会一直存在于消息队列中,等待被处理。每个线程中只会有一个MessageQueue对象。
Looper:每个线程通过Handler发送的消息都保存在,MessageQueue中,Looper通过调用loop()的方法,就会进入到一个无限循环当中,然后每当发现Message Queue中存在一条消息,就会将它取出,并传递到Handler的handleMessage()方法中。每个线程中只会有一个Looper对象。
ThreadLocal:MessageQueue对象,和Looper对象在每个线程中都只会有一个对象,怎么能保证它只有一个对象,就通过ThreadLocal来保存。Thread Local是一个线程内部的数据存储类,通过它可以在指定线程中存储数据,数据存储以后,只有在指定线程中可以获取到存储到数据,对于其他线程来说则无法获取到数据。
了解了这些基本概念后,我们深入源码来了解Handler的工作机制。
MessageQueue消息队列是通过一个单链表的数据结构来维护消息列表的。下面主要看enqueueMessage方法和next()方法。如下:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don‘t have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
可以看出,在这个方法里主要是根据时间的顺序向单链表中插入一条消息。
next()方法。如下
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
在next方法是一个无限循环的方法,如果有消息返回这条消息并从链表中移除,而没有消息则一直阻塞在这里。
每个程序都有一个入口,而Android程序是基于java的,java的程序入口是静态的main函数,因此Android程序的入口也应该为静态的main函数,在android程序中这个静态的main在ActivityThread类中。我们来看一下这个main方法,如下:
public static void main(String[] args) {
SamplingProfilerIntegration.start();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
Security.addProvider(new AndroidKeyStoreProvider());
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>");
//######
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
在main方法中系统调用了 Looper.prepareMainLooper();来创建主线程的Looper以及MessageQueue,并通过Looper.loop()来开启主线程的消息循环。来看看Looper.prepareMainLooper()是怎么创建出这两个对象的。如下:
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
可以看到,在这个方法中调用了 prepare(false);方法和 myLooper();方法,我在进入这个两个方法中,如下:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
在这里可以看出,sThreadLocal对象保存了一个Looper对象,首先判断是否已经存在Looper对象了,以防止被调用两次。sThreadLocal对象是ThreadLocal类型,因此保证了每个线程中只有一个Looper对象。Looper对象是什么创建的,我们进入看看,如下:
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
可以看出,这里在Looper构造函数中创建出了一个MessageQueue对象和保存了当前线程。从上面可以看出一个线程中只有一个Looper对象,而Message Queue对象是在Looper构造函数创建出来的,因此每一个线程也只会有一个MessageQueue对象。
对prepare方法还有一个重载的方法:如下
public static void prepare() {
prepare(true);
}
prepare()仅仅是对prepare(boolean quitAllowed) 的封装而已,在这里就很好解释了在主线程为什么不用调用Looper.prepare()方法了。因为在主线程启动的时候系统已经帮我们自动调用了Looper.prepare()方法。
在Looper.prepareMainLooper()方法中还调用了一个方法myLooper(),我们进去看看,如下:
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
在调用prepare()方法中在当前线程保存一个Looper对象sThreadLocal.set(new Looper(quitAllowed));my Looper()方法就是取出当前线程的Looper对象,保存在sMainLooper引用中。
在main()方法中还调用了Looper.loop()方法,如下:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn‘t called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn‘t corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}
在这个方法里,进入一个无限循环,不断的从MessageQueue的next方法获取消息,而next方法是一个阻塞操作,当没有消息的时候一直在阻塞,当有消息通过 msg.target.dispatchMessage(msg);这里的msg.target其实就是发送给这条消息的Handler对象。
看看Handler的构造方法。如下:
public Handler(Callback callback) {
this(callback, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
我们去看看没有Looper 对象的构造方法:
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can‘t create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
可以看到,到looper对象为null,抛出 “Can’t create handler inside thread that has not called Looper.prepare()”异常由这里可以知道,当我们在子线程使用Handler的时候要手动调用Looper.prepare()创建一个Looper对象,之所以主线程不用,是系统启动的时候帮我们自动调用了Looper.prepare()方法。
handler的工作主要包含发送和接收过程。消息的发送主要通过post和send的一系列方法,而post的一系列方法是最终是通过send的一系列方法来实现的。而send的一系列方法最终是通过sendMessageAtTime方法来实现的,除了sendMessageAtFrontOfQueue()这个方法。去看看这些一系列send的方法,如下:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
可以看出,handler发送一条消息其实就是在消息队列插入一条消息。在Looper的loop方法中,从Message Queue中取出消息调msg.target.dispatchMessage(msg);这里其实就是调用了Handler的dispatchMessage(msg)方法,进去看看,如下:
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
判断msg.callback是否为空,不为空调用 handleCallback(msg);来处理消息。其实callback是一个Runnable对象,就是Handler发送post消息传过来的对象。
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean postAtTime(Runnable r, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
public final boolean postAtFrontOfQueue(Runnable r)
{
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
进去handleCallback方法看看怎么处理消息的,如下:
private static void handleCallback(Message message) {
message.callback.run();
}
可以看出,其实就是回调Runnable对象的run方法。Activity的runOnUiThread,View的postDelayed方法也是同样的原理,我们先看看runOnUiThread方法,如下:
public final void runOnUiThread(Runnable action) {
if (Thread.currentThread() != mUiThread) {
mHandler.post(action);
} else {
action.run();
}
}
View的postDelayed方法。如下:
public boolean postDelayed(Runnable action, long delayMillis) {
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
return attachInfo.mHandler.postDelayed(action, delayMillis);
}
// Assume that post will succeed later
ViewRootImpl.getRunQueue().postDelayed(action, delayMillis);
return true;
}
实质上都是在UI线程中执行了Runnable的run方法。
如果msg.callback是否为null,判断mCallback是否为null?mCallback是一个接口,如下:
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}
CallBack其实提供了另一种使用Handler的方式,可以派生子类重写handleMessage()方法,也可以通过设置CallBack来实现。
我们梳理一下我们在主线程使用Handler的过程。
首先在主线程创建一个Handler对象 ,并重写handleMessage()方法。然后当在子线程中需要进行更新UI的操作,我们就创建一个Message对象,并通过handler发送这条消息出去。之后这条消息被加入到MessageQueue队列中等待被处理,通过Looper对象会一直尝试从Message Queue中取出待处理的消息,最后分发会Handler的handler Message()方法中。
END…
原文:http://blog.csdn.net/u012827296/article/details/51236614