法线贴图 在之前学习过了,我们使用法线贴图在低分辨率的模型上 模拟 高分辨率的效果。
Unity中 通过 UnpackNormal 函数 来使用法线贴图。
之前学习法线贴图的记录
这一节讲的是 在Cubemap 上使用法线贴图。模拟凹凸效果。
最终效果如图
一起来做吧。
首先搭建好场景,和上一节一样。
导入法线贴图
创建材质 、Shader 。
复制上一节的 Shader 就行。然后修改成下面的内容。
Shader "CookBookShaders/Chapt4-4/Cubemap_NormalMap" { Properties { _MainTint("Diffuse Color",Color)=(1,1,1,1) _MainTex ("Base (RGB)", 2D) = "white" {} _NormalMap("Normal Map",2D) = "bump"{} _Cubemap("Cubemap",CUBE)=""{} _ReflAmount("Reflection Amount",Range(0,1))=0.5 } SubShader { Tags { "RenderType"="Opaque" } LOD 200 CGPROGRAM #pragma surface surf Lambert float4 _MainTint; sampler2D _MainTex; sampler2D _NormalMap; samplerCUBE _Cubemap; float _ReflAmount; struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex); //从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap)); o.Normal=normals; //上面使用法线贴图中的法线数据 替代了 原来的法线数据。 //法线被修改了,就不能 直接用原来的 内置属性 worldRefl 这个反射向量,而是要通过 WorldReflectionVector(IN,o.Normal)来获取。 //使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount; o.Albedo = c.rgb * _MainTint; o.Alpha = c.a; } ENDCG } FallBack "Diffuse" }
1、在 Properties 属性块中添加了法线贴图
_NormalMap("Normal Map",2D) = "bump"{}
sampler2D _NormalMap;
2、在 Input 中 添加了 法线贴图的UV,以及一个奇怪的字段 INTERNAL_DATA
struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA };
转自http://blog.csdn.net/huutu http://www.thisisgame.com.cn
INTERNAL_DATA
书上有两点解释
A:通过在Input 中添加 INTERNAL_DATA ,我们就可以访问由法线贴图修改后的表面法线。
这个很奇怪,为什么要添加 INTERNAL_DATA,才可以访问由法线贴图修改后的表面法线?上次学习法线贴图的时候可没有这个东西。
习惯性到 CGIncludes 里面去查找,发现并没有 INTERNAL_DATA 。
在官方文档
http://docs.unity3d.com/Manual/SL-SurfaceShaderExamples.html
If you want to do reflections that are affected by normal maps, it needs to be slightly more involved: INTERNAL_DATA
needs to be added to the Input structure, and WorldReflectionVector
function used to compute per-pixel reflection vector after you’ve written the Normal output.
就是说计算世界反射向量的时候 使用了法线贴图就要加上 这个。
谷歌一下,发现网友说在 生成的代码中能看出来,然后就查看生成的代码
Shader "CookBookShaders/Chapt4-4/Cubemap_NormalMap" { Properties { _MainTint("Diffuse Color",Color)=(1,1,1,1) _MainTex ("Base (RGB)", 2D) = "white" {} _NormalMap("Normal Map",2D) = "bump"{} _Cubemap("Cubemap",CUBE)=""{} _ReflAmount("Reflection Amount",Range(0,1))=0.5 } SubShader { Tags { "RenderType"="Opaque" } LOD 200 // ------------------------------------------------------------ // Surface shader code generated out of a CGPROGRAM block: // ---- forward rendering base pass: Pass { Name "FORWARD" Tags { "LightMode" = "ForwardBase" } CGPROGRAM // compile directives #pragma vertex vert_surf #pragma fragment frag_surf #pragma multi_compile_fwdbase #include "HLSLSupport.cginc" #include "UnityShaderVariables.cginc" #define UNITY_PASS_FORWARDBASE #include "UnityCG.cginc" #include "Lighting.cginc" #include "AutoLight.cginc" #define INTERNAL_DATA half3 TtoW0; half3 TtoW1; half3 TtoW2; #define WorldReflectionVector(data,normal) reflect (data.worldRefl, half3(dot(data.TtoW0,normal), dot(data.TtoW1,normal), dot(data.TtoW2,normal))) #define WorldNormalVector(data,normal) fixed3(dot(data.TtoW0,normal), dot(data.TtoW1,normal), dot(data.TtoW2,normal)) // Original surface shader snippet: #line 18 "" #ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING #endif //#pragma surface surf Lambert float4 _MainTint; sampler2D _MainTex; sampler2D _NormalMap; samplerCUBE _Cubemap; float _ReflAmount; struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex); //从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap)); o.Normal=normals; //上面使用法线贴图中的法线数据 替代了 原来的法线数据。 //法线被修改了,就不能 直接用原来的 内置属性 worldRefl 这个反射向量,而是要通过 WorldReflectionVector(IN,o.Normal)来获取。 //使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount; o.Albedo = c.rgb * _MainTint; o.Alpha = c.a; } // vertex-to-fragment interpolation data #ifdef LIGHTMAP_OFF struct v2f_surf { float4 pos : SV_POSITION; float4 pack0 : TEXCOORD0; fixed4 TtoW0 : TEXCOORD1; fixed4 TtoW1 : TEXCOORD2; fixed4 TtoW2 : TEXCOORD3; fixed3 lightDir : TEXCOORD4; fixed3 vlight : TEXCOORD5; LIGHTING_COORDS(6,7) }; #endif #ifndef LIGHTMAP_OFF struct v2f_surf { float4 pos : SV_POSITION; float4 pack0 : TEXCOORD0; fixed4 TtoW0 : TEXCOORD1; fixed4 TtoW1 : TEXCOORD2; fixed4 TtoW2 : TEXCOORD3; float2 lmap : TEXCOORD4; LIGHTING_COORDS(5,6) }; #endif #ifndef LIGHTMAP_OFF float4 unity_LightmapST; #endif float4 _MainTex_ST; float4 _NormalMap_ST; // vertex shader v2f_surf vert_surf (appdata_full v) { v2f_surf o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex); o.pack0.zw = TRANSFORM_TEX(v.texcoord, _NormalMap); float3 viewDir = -ObjSpaceViewDir(v.vertex); float3 worldRefl = mul ((float3x3)_Object2World, viewDir); TANGENT_SPACE_ROTATION; o.TtoW0 = float4(mul(rotation, _Object2World[0].xyz), worldRefl.x)*unity_Scale.w; o.TtoW1 = float4(mul(rotation, _Object2World[1].xyz), worldRefl.y)*unity_Scale.w; o.TtoW2 = float4(mul(rotation, _Object2World[2].xyz), worldRefl.z)*unity_Scale.w; #ifndef LIGHTMAP_OFF o.lmap.xy = v.texcoord1.xy * unity_LightmapST.xy + unity_LightmapST.zw; #endif float3 worldN = mul((float3x3)_Object2World, SCALED_NORMAL); float3 lightDir = mul (rotation, ObjSpaceLightDir(v.vertex)); #ifdef LIGHTMAP_OFF o.lightDir = lightDir; #endif // SH/ambient and vertex lights #ifdef LIGHTMAP_OFF float3 shlight = ShadeSH9 (float4(worldN,1.0)); o.vlight = shlight; #ifdef VERTEXLIGHT_ON float3 worldPos = mul(_Object2World, v.vertex).xyz; o.vlight += Shade4PointLights ( unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0, unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb, unity_4LightAtten0, worldPos, worldN ); #endif // VERTEXLIGHT_ON #endif // LIGHTMAP_OFF // pass lighting information to pixel shader TRANSFER_VERTEX_TO_FRAGMENT(o); return o; } #ifndef LIGHTMAP_OFF sampler2D unity_Lightmap; #ifndef DIRLIGHTMAP_OFF sampler2D unity_LightmapInd; #endif #endif // fragment shader fixed4 frag_surf (v2f_surf IN) : SV_Target { // prepare and unpack data #ifdef UNITY_COMPILER_HLSL Input surfIN = (Input)0; #else Input surfIN; #endif surfIN.uv_MainTex = IN.pack0.xy; surfIN.uv_NormalMap = IN.pack0.zw; surfIN.worldRefl = float3(IN.TtoW0.w, IN.TtoW1.w, IN.TtoW2.w); surfIN.TtoW0 = IN.TtoW0.xyz; surfIN.TtoW1 = IN.TtoW1.xyz; surfIN.TtoW2 = IN.TtoW2.xyz; #ifdef UNITY_COMPILER_HLSL SurfaceOutput o = (SurfaceOutput)0; #else SurfaceOutput o; #endif o.Albedo = 0.0; o.Emission = 0.0; o.Specular = 0.0; o.Alpha = 0.0; o.Gloss = 0.0; // call surface function surf (surfIN, o); // compute lighting & shadowing factor fixed atten = LIGHT_ATTENUATION(IN); fixed4 c = 0; // realtime lighting: call lighting function #ifdef LIGHTMAP_OFF c = LightingLambert (o, IN.lightDir, atten); #endif // LIGHTMAP_OFF || DIRLIGHTMAP_OFF #ifdef LIGHTMAP_OFF c.rgb += o.Albedo * IN.vlight; #endif // LIGHTMAP_OFF // lightmaps: #ifndef LIGHTMAP_OFF #ifndef DIRLIGHTMAP_OFF // directional lightmaps fixed4 lmtex = tex2D(unity_Lightmap, IN.lmap.xy); fixed4 lmIndTex = tex2D(unity_LightmapInd, IN.lmap.xy); half3 lm = LightingLambert_DirLightmap(o, lmtex, lmIndTex, 1).rgb; #else // !DIRLIGHTMAP_OFF // single lightmap fixed4 lmtex = tex2D(unity_Lightmap, IN.lmap.xy); fixed3 lm = DecodeLightmap (lmtex); #endif // !DIRLIGHTMAP_OFF // combine lightmaps with realtime shadows #ifdef SHADOWS_SCREEN #if defined(UNITY_NO_RGBM) c.rgb += o.Albedo * min(lm, atten*2); #else c.rgb += o.Albedo * max(min(lm,(atten*2)*lmtex.rgb), lm*atten); #endif #else // SHADOWS_SCREEN c.rgb += o.Albedo * lm; #endif // SHADOWS_SCREEN c.a = o.Alpha; #endif // LIGHTMAP_OFF c.rgb += o.Emission; return c; } ENDCG } // ---- forward rendering additive lights pass: Pass { Name "FORWARD" Tags { "LightMode" = "ForwardAdd" } ZWrite Off Blend One One Fog { Color (0,0,0,0) } CGPROGRAM // compile directives #pragma vertex vert_surf #pragma fragment frag_surf #pragma multi_compile_fwdadd #include "HLSLSupport.cginc" #include "UnityShaderVariables.cginc" #define UNITY_PASS_FORWARDADD #include "UnityCG.cginc" #include "Lighting.cginc" #include "AutoLight.cginc" #define INTERNAL_DATA #define WorldReflectionVector(data,normal) data.worldRefl #define WorldNormalVector(data,normal) normal // Original surface shader snippet: #line 18 "" #ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING #endif //#pragma surface surf Lambert float4 _MainTint; sampler2D _MainTex; sampler2D _NormalMap; samplerCUBE _Cubemap; float _ReflAmount; struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex); //从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap)); o.Normal=normals; //上面使用法线贴图中的法线数据 替代了 原来的法线数据。 //法线被修改了,就不能 直接用原来的 内置属性 worldRefl 这个反射向量,而是要通过 WorldReflectionVector(IN,o.Normal)来获取。 //使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount; o.Albedo = c.rgb * _MainTint; o.Alpha = c.a; } // vertex-to-fragment interpolation data struct v2f_surf { float4 pos : SV_POSITION; float4 pack0 : TEXCOORD0; half3 lightDir : TEXCOORD1; LIGHTING_COORDS(2,3) }; float4 _MainTex_ST; float4 _NormalMap_ST; // vertex shader v2f_surf vert_surf (appdata_full v) { v2f_surf o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex); o.pack0.zw = TRANSFORM_TEX(v.texcoord, _NormalMap); TANGENT_SPACE_ROTATION; float3 lightDir = mul (rotation, ObjSpaceLightDir(v.vertex)); o.lightDir = lightDir; // pass lighting information to pixel shader TRANSFER_VERTEX_TO_FRAGMENT(o); return o; } // fragment shader fixed4 frag_surf (v2f_surf IN) : SV_Target { // prepare and unpack data #ifdef UNITY_COMPILER_HLSL Input surfIN = (Input)0; #else Input surfIN; #endif surfIN.uv_MainTex = IN.pack0.xy; surfIN.uv_NormalMap = IN.pack0.zw; #ifdef UNITY_COMPILER_HLSL SurfaceOutput o = (SurfaceOutput)0; #else SurfaceOutput o; #endif o.Albedo = 0.0; o.Emission = 0.0; o.Specular = 0.0; o.Alpha = 0.0; o.Gloss = 0.0; // call surface function surf (surfIN, o); #ifndef USING_DIRECTIONAL_LIGHT fixed3 lightDir = normalize(IN.lightDir); #else fixed3 lightDir = IN.lightDir; #endif fixed4 c = LightingLambert (o, lightDir, LIGHT_ATTENUATION(IN)); c.a = 0.0; return c; } ENDCG } // ---- deferred lighting base geometry pass: Pass { Name "PREPASS" Tags { "LightMode" = "PrePassBase" } Fog {Mode Off} CGPROGRAM // compile directives #pragma vertex vert_surf #pragma fragment frag_surf #pragma exclude_renderers flash #include "HLSLSupport.cginc" #include "UnityShaderVariables.cginc" #define UNITY_PASS_PREPASSBASE #include "UnityCG.cginc" #include "Lighting.cginc" #define INTERNAL_DATA #define WorldReflectionVector(data,normal) data.worldRefl #define WorldNormalVector(data,normal) normal // Original surface shader snippet: #line 18 "" #ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING #endif //#pragma surface surf Lambert float4 _MainTint; sampler2D _MainTex; sampler2D _NormalMap; samplerCUBE _Cubemap; float _ReflAmount; struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex); //从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap)); o.Normal=normals; //上面使用法线贴图中的法线数据 替代了 原来的法线数据。 //法线被修改了,就不能 直接用原来的 内置属性 worldRefl 这个反射向量,而是要通过 WorldReflectionVector(IN,o.Normal)来获取。 //使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount; o.Albedo = c.rgb * _MainTint; o.Alpha = c.a; } // vertex-to-fragment interpolation data struct v2f_surf { float4 pos : SV_POSITION; float2 pack0 : TEXCOORD0; float3 TtoW0 : TEXCOORD1; float3 TtoW1 : TEXCOORD2; float3 TtoW2 : TEXCOORD3; }; float4 _NormalMap_ST; // vertex shader v2f_surf vert_surf (appdata_full v) { v2f_surf o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.pack0.xy = TRANSFORM_TEX(v.texcoord, _NormalMap); TANGENT_SPACE_ROTATION; o.TtoW0 = mul(rotation, ((float3x3)_Object2World)[0].xyz)*unity_Scale.w; o.TtoW1 = mul(rotation, ((float3x3)_Object2World)[1].xyz)*unity_Scale.w; o.TtoW2 = mul(rotation, ((float3x3)_Object2World)[2].xyz)*unity_Scale.w; return o; } // fragment shader fixed4 frag_surf (v2f_surf IN) : SV_Target { // prepare and unpack data #ifdef UNITY_COMPILER_HLSL Input surfIN = (Input)0; #else Input surfIN; #endif surfIN.uv_NormalMap = IN.pack0.xy; #ifdef UNITY_COMPILER_HLSL SurfaceOutput o = (SurfaceOutput)0; #else SurfaceOutput o; #endif o.Albedo = 0.0; o.Emission = 0.0; o.Specular = 0.0; o.Alpha = 0.0; o.Gloss = 0.0; // call surface function surf (surfIN, o); fixed3 worldN; worldN.x = dot(IN.TtoW0, o.Normal); worldN.y = dot(IN.TtoW1, o.Normal); worldN.z = dot(IN.TtoW2, o.Normal); o.Normal = worldN; // output normal and specular fixed4 res; res.rgb = o.Normal * 0.5 + 0.5; res.a = o.Specular; return res; } ENDCG } // ---- deferred lighting final pass: Pass { Name "PREPASS" Tags { "LightMode" = "PrePassFinal" } ZWrite Off CGPROGRAM // compile directives #pragma vertex vert_surf #pragma fragment frag_surf #pragma multi_compile_prepassfinal #pragma exclude_renderers flash #include "HLSLSupport.cginc" #include "UnityShaderVariables.cginc" #define UNITY_PASS_PREPASSFINAL #include "UnityCG.cginc" #include "Lighting.cginc" #define INTERNAL_DATA half3 TtoW0; half3 TtoW1; half3 TtoW2; #define WorldReflectionVector(data,normal) reflect (data.worldRefl, half3(dot(data.TtoW0,normal), dot(data.TtoW1,normal), dot(data.TtoW2,normal))) #define WorldNormalVector(data,normal) fixed3(dot(data.TtoW0,normal), dot(data.TtoW1,normal), dot(data.TtoW2,normal)) // Original surface shader snippet: #line 18 "" #ifdef DUMMY_PREPROCESSOR_TO_WORK_AROUND_HLSL_COMPILER_LINE_HANDLING #endif //#pragma surface surf Lambert float4 _MainTint; sampler2D _MainTex; sampler2D _NormalMap; samplerCUBE _Cubemap; float _ReflAmount; struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; INTERNAL_DATA }; void surf (Input IN, inout SurfaceOutput o) { half4 c = tex2D (_MainTex, IN.uv_MainTex); //从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap)); o.Normal=normals; //上面使用法线贴图中的法线数据 替代了 原来的法线数据。 //法线被修改了,就不能 直接用原来的 内置属性 worldRefl 这个反射向量,而是要通过 WorldReflectionVector(IN,o.Normal)来获取。 //使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount; o.Albedo = c.rgb * _MainTint; o.Alpha = c.a; } // vertex-to-fragment interpolation data struct v2f_surf { float4 pos : SV_POSITION; float4 pack0 : TEXCOORD0; float4 screen : TEXCOORD1; fixed4 TtoW0 : TEXCOORD2; fixed4 TtoW1 : TEXCOORD3; fixed4 TtoW2 : TEXCOORD4; #ifdef LIGHTMAP_OFF float3 vlight : TEXCOORD5; #else float2 lmap : TEXCOORD5; #ifdef DIRLIGHTMAP_OFF float4 lmapFadePos : TEXCOORD6; #endif #endif }; #ifndef LIGHTMAP_OFF float4 unity_LightmapST; #endif float4 _MainTex_ST; float4 _NormalMap_ST; // vertex shader v2f_surf vert_surf (appdata_full v) { v2f_surf o; o.pos = mul (UNITY_MATRIX_MVP, v.vertex); o.pack0.xy = TRANSFORM_TEX(v.texcoord, _MainTex); o.pack0.zw = TRANSFORM_TEX(v.texcoord, _NormalMap); float3 viewDir = -ObjSpaceViewDir(v.vertex); float3 worldRefl = mul ((float3x3)_Object2World, viewDir); TANGENT_SPACE_ROTATION; o.TtoW0 = float4(mul(rotation, _Object2World[0].xyz), worldRefl.x)*unity_Scale.w; o.TtoW1 = float4(mul(rotation, _Object2World[1].xyz), worldRefl.y)*unity_Scale.w; o.TtoW2 = float4(mul(rotation, _Object2World[2].xyz), worldRefl.z)*unity_Scale.w; o.screen = ComputeScreenPos (o.pos); #ifndef LIGHTMAP_OFF o.lmap.xy = v.texcoord1.xy * unity_LightmapST.xy + unity_LightmapST.zw; #ifdef DIRLIGHTMAP_OFF o.lmapFadePos.xyz = (mul(_Object2World, v.vertex).xyz - unity_ShadowFadeCenterAndType.xyz) * unity_ShadowFadeCenterAndType.w; o.lmapFadePos.w = (-mul(UNITY_MATRIX_MV, v.vertex).z) * (1.0 - unity_ShadowFadeCenterAndType.w); #endif #else float3 worldN = mul((float3x3)_Object2World, SCALED_NORMAL); o.vlight = ShadeSH9 (float4(worldN,1.0)); #endif return o; } sampler2D _LightBuffer; #if defined (SHADER_API_XBOX360) && defined (HDR_LIGHT_PREPASS_ON) sampler2D _LightSpecBuffer; #endif #ifndef LIGHTMAP_OFF sampler2D unity_Lightmap; sampler2D unity_LightmapInd; float4 unity_LightmapFade; #endif fixed4 unity_Ambient; // fragment shader fixed4 frag_surf (v2f_surf IN) : SV_Target { // prepare and unpack data #ifdef UNITY_COMPILER_HLSL Input surfIN = (Input)0; #else Input surfIN; #endif surfIN.uv_MainTex = IN.pack0.xy; surfIN.uv_NormalMap = IN.pack0.zw; surfIN.worldRefl = float3(IN.TtoW0.w, IN.TtoW1.w, IN.TtoW2.w); surfIN.TtoW0 = IN.TtoW0.xyz; surfIN.TtoW1 = IN.TtoW1.xyz; surfIN.TtoW2 = IN.TtoW2.xyz; #ifdef UNITY_COMPILER_HLSL SurfaceOutput o = (SurfaceOutput)0; #else SurfaceOutput o; #endif o.Albedo = 0.0; o.Emission = 0.0; o.Specular = 0.0; o.Alpha = 0.0; o.Gloss = 0.0; // call surface function surf (surfIN, o); half4 light = tex2Dproj (_LightBuffer, UNITY_PROJ_COORD(IN.screen)); #if defined (SHADER_API_MOBILE) light = max(light, half4(0.001)); #endif #ifndef HDR_LIGHT_PREPASS_ON light = -log2(light); #endif #if defined (SHADER_API_XBOX360) && defined (HDR_LIGHT_PREPASS_ON) light.w = tex2Dproj (_LightSpecBuffer, UNITY_PROJ_COORD(IN.screen)).r; #endif // add lighting from lightmaps / vertex / ambient: #ifndef LIGHTMAP_OFF #ifdef DIRLIGHTMAP_OFF // dual lightmaps fixed4 lmtex = tex2D(unity_Lightmap, IN.lmap.xy); fixed4 lmtex2 = tex2D(unity_LightmapInd, IN.lmap.xy); half lmFade = length (IN.lmapFadePos) * unity_LightmapFade.z + unity_LightmapFade.w; half3 lmFull = DecodeLightmap (lmtex); half3 lmIndirect = DecodeLightmap (lmtex2); half3 lm = lerp (lmIndirect, lmFull, saturate(lmFade)); light.rgb += lm; #else // directional lightmaps fixed4 lmtex = tex2D(unity_Lightmap, IN.lmap.xy); fixed4 lmIndTex = tex2D(unity_LightmapInd, IN.lmap.xy); half4 lm = LightingLambert_DirLightmap(o, lmtex, lmIndTex, 1); light += lm; #endif #else light.rgb += IN.vlight; #endif half4 c = LightingLambert_PrePass (o, light); c.rgb += o.Emission; return c; } ENDCG } // ---- end of surface shader generated code #LINE 64 } FallBack "Diffuse" }
而且会发现在生成的代码中不止一个 INTERNAL_DATA。这是因为生成的代码中有多个PASS
forward rendering additive lights pass: deferred lighting base geometry pass: deferred lighting final pass: forward rendering base pass:
每个PASS 都有一个,所以有好几个。
那么,不使用 INTERNAL_DATA,而是直接使用 具体的内容,可以吗?来试一下。
首先,从Shader 中删掉 INTERNAL_DATA。
Unity 报了以下错误
Shader error in ‘CookBookShaders/Chapt4-4/Cubemap_NormalMap‘: invalid subscript ‘TtoW0‘ at line 59
o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount;
因为从上面 Shader 编译后的代码看到,WorldReflectionVector 也是一个宏
#define WorldReflectionVector(data,normal) reflect (data.worldRefl, half3(dot(data.TtoW0,normal), dot(data.TtoW1,normal), dot(data.TtoW2,normal)))
其实就是说,在WorldReflectionVector 这个函数里找不到 TtoW0 这个参数了。
然后,在 Input 结构体中添加 INTERNAL_DATA 的具体内容看看
struct Input { float2 uv_MainTex; float2 uv_NormalMap; float3 worldRefl; half3 TtoW0; half3 TtoW1; half3 TtoW2; };
B:在Input 中 添加 float3 worldRefl 和 INTERNAL_DATA ,给o.Normal 赋值的话,就可以 用 WorldReflectionVector(IN,o.Normal) 获取到 法线贴图 计算后的 反射向量。
原文是这样写的
在Input 结构体中还有更多的内置函数,其中一部分如下:
float3 viewDir : Will contain view direction, for computing Parallax effects, rimlighting, and so on. float4 COLOR : Will contain interpolated per-vertex color. float4 screenPos: Will contain screen-space position for reflection effects. Used by WetStreet shader in Dark Unity, for example. float3 worldPos : Will contain world space position. float3 worldRefl : Will contain world reflection vector if Surface Shader does not write to o.Normal. See Reflect-Diffuse shader for example. float3 worldNormal : Will contain world normal vector if Surface Shader does not write to o.Normal. float3 worldRef;INTERNAL_DATA: Will contain world reflection vector if Surface Shader writes to o.Normal. To get the reflection vector based on per-pixel normal map, use WorldReflectionVector (IN,o.Normal). See Reflect-Bumped shader for example. float3 worldNormal;INTERNAL_DATA: Will contain world normal vector if Surface Shader writes to o.Normal. To get the normal vector based on per-pixel normal map, use WorldNormalVector (IN, o.Normal).
3、在 surf 函数中 添加了 读取 法线贴图的代码
//从法线贴图中提取法线信息,UnpackNormal这个函数在 CGInclude 文件夹中的Lighting中。 float3 normals=UnpackNormal(tex2D(_NormalMap,IN.uv_NormalMap));
//使用WorldReflectionVector 获得 基于法线贴图中的反射向量的 世界反射向量 o.Emission = texCUBE(_Cubemap,WorldReflectionVector(IN,o.Normal)).rgb * _ReflAmount;
示例项目打包下载:
http://pan.baidu.com/s/1c1TcSgS
Unity Shaders and Effects Cookbook (4-4)在Cubemap 上使用 法线贴图 (法线贴图与反射)
原文:http://blog.csdn.net/huutu/article/details/51224386