首页 > 其他 > 详细

POJ 3061 Subsequence(尺取法)

时间:2016-04-29 19:55:53      阅读:208      评论:0      收藏:0      [点我收藏+]

传送门



Subsequence
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 11284
Accepted: 4694

Description

A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, and a positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of the subsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.

Input

The first line is the number of test cases. For each test case the program has to read the numbers N and S, separated by an interval, from the first line. The numbers of the sequence are given in the second line of the test case, separated by intervals. The input will finish with the end of file.

Output

For each the case the program has to print the result on separate line of the output file.if no answer, print 0.

Sample Input

2
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5

Sample Output

2
3

Source


题目大意:

给定T组数据,每组数据有一个数n,表示有n个数,然后再给定一个数S,让你求这个数列总和>=S的长度的最小值。(数据范围 n<1e5,S<1e8,a[i]<=1e4)


解题思路:

(1)首先说一下复杂度为 O(n*log(n))的算法

因为所有的元素都是>0的,所以我们可以想到的是假设数列 ai ai+1 ai+2 ....at-1 的和>=S,那么我们可以求一下这些数列的前i项和,现在定义sum[i]为a0 a1 a2 ...ai-1的,那么ai ai+1 ai+2 ... at-1 就可以写成 sum[t] - sum[i], 因为 sum[t]-sum[i] >= t,那么我们要求的是这些长度的最小值,所以就是 t-i 的最小值,那么我们可以先预处理计算sum[i]的值,然后在可以进行二分算法求 t-i 的最小值


My Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100000+5;
int a[MAXN],sum[MAXN];
int n;
void get_Sum()
{
    sum[0] = 0;
    for(int i=0; i<n; i++)
        sum[i+1] = sum[i] + a[i];
}
int main()
{
    int T,S;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&S);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        get_Sum();
        if(sum[n] < S)
            puts("0");
        else
        {
            int ans = n + 100;
            for(int i=0; sum[i]+S<=sum[n]; i++)
            {
                int tmp = lower_bound(sum+i,sum+n,S+sum[i])-sum;
                ans = min(ans,tmp-i);
            }
            cout<<ans<<endl;
        }
    }
    return 0;
}

(2)复杂度为 O(n)的算法

现在就得说一下尺取法了,其实尺取法的关键就是两个指针都是从头开始的,两个指针s, t,if(sum<S)那么sum+=a[t],t++;否则的话,sum -= a[s],s++;抓住这个关键就行了,在不满足条件的时候不要忘记更新 ans,ans始终是s-t的最小值。。。

My Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100000+5;
int a[MAXN];
int main()
{
    int T,S,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&S);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        int t=0, s=0, sum=0;
        int ans = n + 100;
        while(1)
        {
            while(t<n && sum<S)
            {
                sum += a[t];
                t++;
            }
            if(sum < S)
                break;
            ans = min(ans, t-s);
            sum -= a[s];
            s++;
        }
        if(ans == n+100)
            puts("0");
        else
        {
            cout<<ans<<endl;
        }
    }
    return 0;
}

技术分享

POJ 3061 Subsequence(尺取法)

原文:http://blog.csdn.net/qingshui23/article/details/51228072

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!