Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11576 | Accepted: 1760 |
Description
Input
Output
Sample Input
2 0 1 1 0 1 0 2 1 0 1 2 1 1 0 1 2
Sample Output
1.00 0.00
一点都不easy...
没能AC的看看吧。。
discuss里面参考数据:
9 样例一: 6259 2664 8292 9080 1244 2972 9097 9680 答案:6162.65 样例二: 0 1 1 0 1 0 2 1 答案:1.00 样例三: 0 1 2 1 1 0 1 2 答案:0.00 样例四: 0 0 10 10 0 0 9 8 答案:0.00 样例五: 0 0 10 10 0 0 8 9 答案:4.50 样例六: //这组数据其实我没过也AC了 0.9 3.1 4 0 0 3 2 2 答案:0.50 样例七: 0 0 0 2 0 0 -3 2 答案:3.00 样例八: 1 1 1 4 0 0 2 3 答案:0.75 样例九: 1 2 1 4 0 0 2 3 答案:0.00
#include<stdio.h> #include<iostream> #include<string.h> #include<math.h> #include<algorithm> using namespace std; const double eps = 1e-8; struct Point { double x,y; }; double cross(Point a,Point b,Point c) { return (a.x-c.x)*(b.y-c.y)-(a.y-c.y)*(b.x-c.x); } ///规范相交 bool isCross(Point a,Point b,Point c,Point d) { if(cross(c,b,a)*cross(b,d,a)<-eps) return false; ///这里要改成eps我上面的那组数据才能为0.5..不过是0也能AC。。so strange if(cross(a,d,c)*cross(d,b,c)<-eps) return false; return true; } ///计算两条直线的交点 Point intersection(Point a,Point b,Point c,Point d) { Point p = a; double t = ((a.x-c.x)*(c.y-d.y)-(a.y-c.y)*(c.x-d.x))/((a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x)); p.x +=(b.x-a.x)*t; p.y +=(b.y-a.y)*t; return p; } int main() { int tcase; scanf("%d",&tcase); while(tcase--) { Point a,b,c,d; scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y); scanf("%lf%lf%lf%lf",&c.x,&c.y,&d.x,&d.y); if(a.y==b.y||c.y==d.y||!isCross(a,b,c,d)) ///排除水平放置还有不相交的情况 { printf("0.00\n"); continue; } Point p = intersection(a,b,c,d); ///交点 double y = min(max(a.y,b.y),max(c.y,d.y)); if(y<=p.y) ///上面的y不可能小于交点,不然接不到水 { printf("0.00\n"); continue; } ///我只要y上面的点 Point t1,t2; if(a.y>b.y) t1 = a; else t1 = b; if(c.y>d.y) t2 = c; else t2 = d; ///两个向量极角大的x坐标必定小于极角小的,不然雨水没办法流进去 if(cross(t1,t2,p)>0&&t1.x>t2.x||cross(t2,t1,p)>0&&t2.x>t1.x) { double k,B,x,x0; if(y==t1.y) { x = t1.x; if(t2.x==p.x) ///这里略坑 { x0 = p.x; } else { k = (t2.y- p.y)/(t2.x - p.x); B = t2.y-k*t2.x; x0 = (y-B)/k; } } else { x = t2.x; if(t1.x==p.x) { x0 = p.x; } else { k = (t1.y- p.y)/(t1.x - p.x); B = t1.y-k*t1.x; x0 = (y-B)/k; } } double l = fabs(x-x0); double h = fabs(y-p.y); printf("%.2lf\n",l*h/2); continue; } printf("0.00\n"); } return 0; }
原文:http://www.cnblogs.com/liyinggang/p/5447843.html