首页 > 其他 > 详细

nyoj 708 ones 动态规划

时间:2014-04-30 21:25:44      阅读:431      评论:0      收藏:0      [点我收藏+]

http://acm.nyist.net/JudgeOnline/problem.php?pid=708

状态转移方程的思路:对于一个数N,可以是N - 1的状态+1 得到,另外,也可以是(n / 2) * (1 + 1)得到,同理对于任意的奇数p,都有如果n可以整除p,都有f(n / p) + f(p)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include<stdio.h>
int dp[10010];
bool isprime[101];
int prime[101];
int total;
void sol()
{
    int i;
    for(i = 4; i < 10010; i++)
    {
        int min = dp[i - 1] + 1;
        int j;
        for(j = 0; prime[j] < i && j < total; j ++)
        {
            if(i % prime[j] == 0)
            {
                min = min < (dp[i / prime[j]] + dp[prime[j]]) ? min : dp[i / prime[j]] + dp[prime[j]];
            }
        }
        dp[i] = min;
    }
}
int main()
{
    int n;
    dp[1] = 1;
    dp[2] = 2;
    dp[3] = 3;
    int i, j;
    for(i = 2; i * i < 100; i++)
    {
        if(isprime[i] == 0)
        {
            for(j = i + i; j < 100; j+= i)
            {
                isprime[j] = 1;
            }
        }
    }
    for(i = 2; i < 100; i++)
    {
        if(isprime[i] == 0)
            prime[total ++] = i;
    }
    sol();
    while(scanf("%d",&n) != EOF)
    {
        printf("%d\n", dp[n]);
    }
    return 0;
}       

  

nyoj 708 ones 动态规划,布布扣,bubuko.com

nyoj 708 ones 动态规划

原文:http://www.cnblogs.com/z-y-p/p/3698952.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!