首页 > 其他 > 详细

(版本定制)第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

时间:2016-05-22 18:38:47      阅读:217      评论:0      收藏:0      [点我收藏+]

本期内容:

    1、数据接收架构设计模式

    2、数据接收源码彻底研究


1、Receiver接受数据的过程类似于MVC模式:

Receiver,ReceiverSupervisor和Driver的关系相当于Model,Control,View,也就是MVC。

Model就是Receiver,存储数据Control,就是ReceiverSupervisor,Driver是获得元数据,也就是View。

技术分享

2、数据的位置信息会被封装到RDD里面。

3、Receiver接受数据,交给ReceiverSupervisor去存储数据。

4、ReceiverTracker是通过发送一个又一个的Job,每个Job只有一个Task,每个Task里面就只有一个ReceiverSupervisor,用这个函数启动每一个Receiver。


下面我们简单的看下Receiver启动流程,应用程序首先通过JobScheduler的start方法来启动receiverTracker的start方法:

def start(): Unit = synchronized {
if (eventLoop != null) return // scheduler has already been started

logDebug("Starting JobScheduler")
eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
 }
eventLoop.start()

// attach rate controllers of input streams to receive batch completion updates
for {
   inputDStream <- ssc.graph.getInputStreams
   rateController <- inputDStream.rateController
} ssc.addStreamingListener(rateController)

listenerBus.start(ssc.sparkContext)
receiverTracker = new ReceiverTracker(ssc)
inputInfoTracker = new InputInfoTracker(ssc)
receiverTracker.start()
//receiver启动
jobGenerator.start()
 logInfo(
"Started JobScheduler")
}

通过调用receiverTracker.start()方法来进行一系列的操作:

/** Start the endpoint and receiver execution thread. */
def start(): Unit = synchronized {
if (isTrackerStarted) {
throw new SparkException("ReceiverTracker already started")
 }

if (!receiverInputStreams.isEmpty) {
endpoint = ssc.env.rpcEnv.setupEndpoint(
"ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
//Rpc消息通信,获取receiver的状态
if (!skipReceiverLaunch) launchReceivers() //启动receiver
   logInfo(
"ReceiverTracker started")
trackerState = Started
}
}

下面通过画图简单的描述下Receiver启动的内部机制:

技术分享


参考博客:http://blog.csdn.net/hanburgud/article/details/51471047

                 http://lqding.blog.51cto.com/9123978/1774426


备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上2000开设的Spark永久免费公开课,地址YY房间号:68917580


本文出自 “DT_Spark大数据梦工厂” 博客,请务必保留此出处http://18610086859.blog.51cto.com/11484530/1775831

(版本定制)第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

原文:http://18610086859.blog.51cto.com/11484530/1775831

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!