首页 > 其他 > 详细

FFT(快速傅里叶变换):HDU 4609 3-idiots

时间:2016-05-22 23:00:17      阅读:190      评论:0      收藏:0      [点我收藏+]

3-idiots

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3560    Accepted Submission(s): 1241


Problem Description
  King OMeGa catched three men who had been streaking in the street. Looking as idiots though, the three men insisted that it was a kind of performance art, and begged the king to free them. Out of hatred to the real idiots, the king wanted to check if they were lying. The three men were sent to the king‘s forest, and each of them was asked to pick a branch one after another. If the three branches they bring back can form a triangle, their math ability would save them. Otherwise, they would be sent into jail.
However, the three men were exactly idiots, and what they would do is only to pick the branches randomly. Certainly, they couldn‘t pick the same branch - but the one with the same length as another is available. Given the lengths of all branches in the forest, determine the probability that they would be saved.
 

 

Input
  An integer T(T≤100) will exist in the first line of input, indicating the number of test cases.
Each test case begins with the number of branches N(3≤N≤105).
The following line contains N integers a_i (1≤a_i≤105), which denotes the length of each branch, respectively.
 

 

Output
  Output the probability that their branches can form a triangle, in accuracy of 7 decimal places.
 

 

Sample Input
2
4
1 3 3 4
4
2 3 3 4
 

 

Sample Output
0.5000000
1.0000000
 
  大家都去mod邝斌吧~
 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstring>
 4 #include <cstdio>
 5 #include <cmath>
 6 using namespace std;
 7 const int maxn=500010;
 8 const long double PI=acos(-1.0);
 9 struct complex{
10     long double r,i;
11     complex(long double r_=0.0,long double i_=0.0){
12         r=r_;i=i_;
13     }
14     complex operator +(complex &a){
15         return complex(a.r+r,a.i+i);
16     }
17     complex operator -(complex &a){
18         return complex(r-a.r,i-a.i);
19     }
20     complex operator *(complex a){
21         return complex(r*a.r-i*a.i,i*a.r+a.i*r);
22     }
23 }A[maxn];
24 
25 void Rader(complex *a,int len){
26     for(int i=1,j=len>>1;i<len-1;i++){
27         if(i<j)swap(a[i],a[j]);
28         int k=len>>1;
29         while(j>=k){
30             j-=k;
31             k>>=1;
32         }
33         j+=k;
34     }
35 }
36 
37 void FFT(complex *a,int len,int on){
38     Rader(a,len);
39     for(int h=2;h<=len;h<<=1){
40         complex wn(cos(-on*PI*2/h),sin(-on*PI*2/h));
41         for(int j=0;j<len;j+=h){
42             complex w(1.0,0);
43             for(int k=j;k<j+(h>>1);k++){
44                 complex x=a[k];
45                 complex y=a[k+(h>>1)]*w;
46                 a[k]=x+y;
47                 a[k+(h>>1)]=x-y;
48                 w=w*wn;
49             }    
50         }
51     }
52     if(on==-1)
53         for(int i=0;i<len;i++)
54             a[i].r/=len;
55 }
56 int a[maxn];
57 long long num[maxn];
58 int main(){
59 #ifndef ONLINE_JUDGE
60     //freopen("","r",stdin);
61     //freopen("","w",stdout);
62 #endif
63     int T,n,len=1;
64     scanf("%d",&T);
65     while(T--){
66         scanf("%d",&n);
67         memset(A,0,sizeof(A));
68         memset(num,0,sizeof(num));
69         while(len<=200000)len<<=1;
70         for(int i=1;i<=n;i++)
71             scanf("%d",&a[i]);
72         sort(a+1,a+n+1);len=1;
73         while(len<=a[n]*2)len<<=1;
74         for(int i=1;i<=n;i++)    
75             A[a[i]].r++;
76         FFT(A,len,1);
77         for(int i=0;i<len;i++)
78             A[i]=A[i]*A[i];
79         FFT(A,len,-1);
80         for(int i=0;i<len;i++)
81             num[i]=(long long)(A[i].r+0.5);
82         for(int i=1;i<=n;i++)
83             num[a[i]<<1]--;
84         for(int i=0;i<len;i++)    
85             num[i]>>=1;
86         for(int i=1;i<len;i++)
87             num[i]+=num[i-1];
88         long long cnt=0;
89         for(int i=1;i<=n;i++){
90             cnt+=num[len-1]-num[a[i]];
91             cnt-=(long long)(n-i)*(i-1);
92             cnt-=n-1;
93             cnt-=(long long)(n-i)*(n-i-1)/2;
94         }
95         long long tot=((long long)n*(n-1)*(n-2))/6;
96         printf("%.7lf\n",1.0*cnt/tot);
97     }
98     return 0;
99 }

 

FFT(快速傅里叶变换):HDU 4609 3-idiots

原文:http://www.cnblogs.com/TenderRun/p/5518143.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!