题目链接:
http://poj.org/problem?id=1707
Language:
Sum of powers
Description
A young schoolboy would like to calculate the sum
for some fixed natural k and different natural n. He observed that calculating ik for all i (1<=i<=n) and summing up results is a too slow way to do it, because the number of required arithmetical operations increases as n increases. Fortunately, there is another method which takes only a constant number of operations regardless of n. It is possible to show that the sum Sk(n) is equal to some polynomial of degree k+1 in the variable n with rational coefficients, i.e., We require that integer M be positive and as small as possible. Under this condition the entire set of such numbers (i.e. M, ak+1, ak, ... , a1, a0) will be unique for the given k. You have to write a program to find such set of coefficients to help the schoolboy make his calculations quicker. Input
The input file contains a single integer k (1<=k<=20).
Output
Write integer numbers M, ak+1, ak, ... , a1, a0 to the output file in the given order. Numbers should be separated by one space. Remember that you should write the answer with the smallest positive M possible.
Sample Input 2 Sample Output 6 2 3 1 0 Source |
题目意思:
已知并且求最小的M,使得a[k+1]---a[0]都为整数。
解题思路:
伯努利数:http://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B0
所以有1^k+2^k+3^k+...+n^k=1/(k+1)(C[k+1,0)*B[0]*n^(k+1-0)+C[k+1,1]*B[1]*n^(k+1-1)+...+C[k+1,j]*B[j]*n^(k+1-j)+...+C[k+1,k]*B[k]*n^(k+1-k))+n^k
先求出伯努利数,然后分母求最小公倍数即可。
注意n^k的系数要加上后面的n^k为C[k+1,1]*B[1]+(k+1)
最后只剩下分数加法了。注意最大公约数为负数的情况,强制转化为正数,用分子保存整个分数的正负性。
代码:
//#include<CSpreadSheet.h> #include<iostream> #include<cmath> #include<cstdio> #include<sstream> #include<cstdlib> #include<string> #include<string.h> #include<cstring> #include<algorithm> #include<vector> #include<map> #include<set> #include<stack> #include<list> #include<queue> #include<ctime> #include<bitset> #include<cmath> #define eps 1e-6 #define INF 0x3f3f3f3f #define PI acos(-1.0) #define ll __int64 #define LL long long #define lson l,m,(rt<<1) #define rson m+1,r,(rt<<1)|1 #define M 1000000007 //#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; #define Maxn 25 ll C[Maxn][Maxn]; struct PP { ll a,b; }B[Maxn],ans[Maxn]; ll k; ll gcd(ll a,ll b) { if(a%b==0) { if(b>0) return b; return -b; } return gcd(b,a%b); } PP add(PP a,PP b) //模拟两个分数的加法 { if(!a.a) //如果有一个为0 return b; if(!b.a) return a; ll temp=a.b/gcd(a.b,b.b)*b.b; //求出分母的最小公倍数 //printf("%I64d\n",temp); PP res; res.a=temp/a.b*a.a+temp/b.b*b.a; //分子相加 res.b=temp; if(res.a) //约掉最大公约数 { ll tt=gcd(res.a,res.b); res.b/=tt; res.a/=tt; } return res; } void init() { memset(C,0,sizeof(C)); for(int i=0;i<=25;i++) { C[i][0]=1; for(int j=1;j<i;j++) C[i][j]=C[i-1][j]+C[i-1][j-1]; C[i][i]=1; } B[0].a=1,B[0].b=1; //求伯努利数 for(int i=1;i<=20;i++) //用递推关系求 { PP temp; temp.a=0; temp.b=0; for(int j=0;j<i;j++) { PP tt=B[j]; tt.a=tt.a*C[i+1][j]; //printf("::::%I64d %I64d:\n",tt.a,tt.b); if(tt.a) { ll te=gcd(tt.a,tt.b); tt.a/=te; tt.b/=te; } temp=add(temp,tt); //printf("i:%d j:%d %I64d %I64d:\n",i,j,temp.a,temp.b); //system("pause"); } temp.a=-temp.a; temp.b*=C[i+1][i]; //printf("%I64d %I64d\n",temp.a,temp.b); //system("pause"); //printf("%I64d\n",gcd(temp.a,temp.b)); if(temp.a) { ll te=gcd(temp.a,temp.b); temp.a/=te; temp.b/=te; } else temp.b=0; B[i]=temp; //printf("i:%d %I64d %I64d\n",i,B[i].a,B[i].b); //system("pause"); } } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); //printf("%I64d\n",gcd(-6,12)); init(); while(~scanf("%I64d",&k)) { ll cur=1; for(int i=0;i<=k;i++) { if(i==1) { ans[i].a=k+1; //B[1]=-1/2要加上后面多出来的n^k ans[i].b=2; } else { ans[i]=B[i]; ans[i].a*=C[k+1][i]; } if(ans[i].a) //约分 { ll temp=gcd(ans[i].a,ans[i].b); ans[i].a/=temp; ans[i].b/=temp; } else ans[i].b=0; if(ans[i].b) //求分母的最小公倍数 cur=cur/gcd(cur,ans[i].b)*ans[i].b; } printf("%I64d ",cur*(k+1)); //printf("->%I64d %I64d %I64d\n",cur,ans[0].a,ans[0].b); for(int i=0;i<=k;i++) //求出通分后每一个系数 { if(ans[i].b) ans[i].a=cur/ans[i].b*ans[i].a; //printf("i:%d %I64d\n",i,ans[i].a); } for(int i=0;i<=k;i++) printf("%I64d ",ans[i].a); printf("0\n"); //最后一个肯定是0 } return 0; }
[伯努利数] poj 1707 Sum of powers,布布扣,bubuko.com
原文:http://blog.csdn.net/cc_again/article/details/24764911