首页 > 其他 > 详细

A fine property of the non-empty countable dense-in-self set in the real line

时间:2014-05-02 17:04:04      阅读:534      评论:0      收藏:0      [点我收藏+]

A fine property of the non-empty countable dense-in-self set in the real line

 

Zujin Zhang

 

School of Mathematics and Computer Science,

GannanNormalUniversity

Ganzhou 341000, P.R. China

 

zhangzujin361@163.com

 

MSC2010: 26A03.

 

Keywords: Dense-in-self set; countable set.

 

Abstract:

Let E?Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 be non-empty, countable, dense-in-self, then we shall show that Ebubuko.com,布布扣ˉbubuko.com,布布扣?Ebubuko.com,布布扣 is dense in Ebubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 .

 

Introduction and the main result

 

 As is well-known, Q?Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 is countable, dense-in-self (that is, Q?Qbubuko.com,布布扣bubuko.com,布布扣=Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 ); and Rbubuko.com,布布扣1bubuko.com,布布扣?Qbubuko.com,布布扣 is dense in Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 .

 

 We generalize this fact as

    Theorem 1. Let E?Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 be non-empty, countable, dense-in-self, then Ebubuko.com,布布扣ˉbubuko.com,布布扣?Ebubuko.com,布布扣 is dense in Ebubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣 .

 

Before proving Theorem 1, let us recall several related definitions and facts.

 

Definition 2. A set Ebubuko.com,布布扣 is closed iff Ebubuko.com,布布扣bubuko.com,布布扣?Ebubuko.com,布布扣 . A set Ebubuko.com,布布扣 is dense-in-self iff E?Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ; that is, Ebubuko.com,布布扣 has no isolated points. A set Ebubuko.com,布布扣 is complete iff Ebubuko.com,布布扣bubuko.com,布布扣=Ebubuko.com,布布扣 .

 

A well-known complete set is the Cantor set. Moreover, we have

 

Lemma 3 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 51, Theorem 1). A non-empty complete set Ebubuko.com,布布扣 has power cbubuko.com,布布扣 ; that is, there is a bijection between Ebubuko.com,布布扣 and Rbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 .

 

 Lemma 4 ([I.P. Natanson, Theory of functions of a real variable, Rivsed Edition, Translated by L.F. Boron, E. Hewitt, Vol. 1, Frederick Ungar Publishing Co., New York, 1961] P 49, Theorem 7). A complete set Ebubuko.com,布布扣 has the form

 

E=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣n1bubuko.com,布布扣(abubuko.com,布布扣nbubuko.com,布布扣,bbubuko.com,布布扣nbubuko.com,布布扣)?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣cbubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

where (abubuko.com,布布扣ibubuko.com,布布扣,bbubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣 , (abubuko.com,布布扣jbubuko.com,布布扣,bbubuko.com,布布扣jbubuko.com,布布扣)bubuko.com,布布扣 (ijbubuko.com,布布扣 ) have no common points.

 

Proof of Theorem 1

Since Ebubuko.com,布布扣 is dense-in-self, we have E?Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , Ebubuko.com,布布扣ˉbubuko.com,布布扣=Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 . Also, by the fact that Ebubuko.com,布布扣′′bubuko.com,布布扣=Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , we see Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 is complete, and has power cbubuko.com,布布扣 . Note that Ebubuko.com,布布扣 is countable, we deduce Ebubuko.com,布布扣bubuko.com,布布扣?E?bubuko.com,布布扣 .

 

Now that Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 is complete, we see by Lemma 4,

Ebubuko.com,布布扣cbubuko.com,布布扣=?bubuko.com,布布扣n1bubuko.com,布布扣(abubuko.com,布布扣nbubuko.com,布布扣,bbubuko.com,布布扣nbubuko.com,布布扣).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

For ? xEbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , ? δ>0bubuko.com,布布扣 , we have

 

[x?δ,x+δ]Ebubuko.com,布布扣bubuko.com,布布扣=([x?δ,x+δ](Ebubuko.com,布布扣bubuko.com,布布扣?E))([x?δ,x+δ]E).bubuko.com,布布扣bubuko.com,布布扣(1)bubuko.com,布布扣bubuko.com,布布扣

By analyzing the complement of [x?δ,x+δ](Ebubuko.com,布布扣bubuko.com,布布扣?E)bubuko.com,布布扣 , we see [x?δ,x+δ]Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 (minus {x?δ}bubuko.com,布布扣 if x?δbubuko.com,布布扣 equals some abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 , and minus {x+δ}bubuko.com,布布扣 if x+δbubuko.com,布布扣 equals some bbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 ) is compelete, thus has power cbubuko.com,布布扣 . Due to the fact that Ebubuko.com,布布扣 is countable, we deduce from (1)bubuko.com,布布扣 that

 

[x?δ,x+δ](Ebubuko.com,布布扣bubuko.com,布布扣?E)?.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

This completes the proof of Theorem 1.

 

A fine property of the non-empty countable dense-in-self set in the real line,布布扣,bubuko.com

A fine property of the non-empty countable dense-in-self set in the real line

原文:http://www.cnblogs.com/zhangzujin/p/3703712.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!