首页 > 其他 > 详细

【级数】 求和

时间:2014-05-03 22:28:53      阅读:407      评论:0      收藏:0      [点我收藏+]

证明

bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(n!)bubuko.com,布布扣2bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣(2n+1)!bubuko.com,布布扣bubuko.com,布布扣=πbubuko.com,布布扣
 

 

分析:这道题初看具有难度运用幂级数恐难解决,由分子分母的特性易想到 $\Gamma$函数然后利用$\Gamma$函数与$\beta$函数的关系即可。

 

Proof: 

 
bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(n!)bubuko.com,布布扣2bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣(2n+1)!bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣tbubuko.com,布布扣nbubuko.com,布布扣(1?t)bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣dtbubuko.com,布布扣=2bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣tbubuko.com,布布扣nbubuko.com,布布扣(1?t)bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣nbubuko.com,布布扣dtbubuko.com,布布扣=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣(t?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)+1bubuko.com,布布扣4bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dtbubuko.com,布布扣=2 arctan2(t?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)|bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣=πbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

 

Remark:交换积分与极限的次序用到了 Levi 渐升定理。

【级数】 求和,布布扣,bubuko.com

【级数】 求和

原文:http://www.cnblogs.com/zhangwenbiao/p/3705281.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!