首页 > 其他 > 详细

POJ 1673 三角形垂心

时间:2014-05-03 21:14:08      阅读:515      评论:0      收藏:0      [点我收藏+]
EXOCENTER OF A TRIANGLE
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3209   Accepted: 1259

Description

Given a triangle ABC, the Extriangles of ABC are constructed as follows:
On each side of ABC, construct a square (ABDE, BCHJ and ACFG in the figure below).
Connect adjacent square corners to form the three Extriangles (AGD, BEJ and CFH in the figure).
The Exomedians of ABC are the medians of the Extriangles, which pass through vertices of the original triangle,extended into the original triangle (LAO, MBO and NCO in the figure. As the figure indicates, the three Exomedians intersect at a common point called the Exocenter (point O in the figure).
This problem is to write a program to compute the Exocenters of triangles.
bubuko.com,布布扣

Input

The first line of the input consists of a positive integer n, which is the number of datasets that follow. Each dataset consists of 3 lines; each line contains two floating point values which represent the (two -dimensional) coordinate of one vertex of a triangle. So, there are total of (n*3) + 1 lines of input. Note: All input triangles wi ll be strongly non-degenerate in that no vertex will be within one unit of the line through the other two vertices.

Output

For each dataset you must print out the coordinates of the Exocenter of the input triangle correct to four decimal places.

Sample Input

2
0.0 0.0
9.0 12.0
14.0 0.0
3.0 4.0
13.0 19.0
2.0 -10.0

Sample Output

9.0000 3.7500
-48.0400 23.3600


证明过程:

1.延长CO到交AB于Q;
2.延长CN到P,使PN=CN,连接FP,很容易得到△PNF≌△CNH,所以角NCH=角NPF,而在三角形中角CFP=180‘-(角NPF+角FCN)=180‘-(角NCH+角NCF)=角ACB;
3.因为CF=AC,FP=CB,角CFP=角ACB,所以△CFP≌△ACB,所以角FCP=角BAC,而角FCP+角ACO等于90‘,所以角BAC+角ACO等于90‘,所以CO垂直于AB。
代码:

/* ***********************************************
Author :_rabbit
Created Time :2014/5/3 16:37:48
File Name :8.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
struct Point{
	double x,y;
	Point(double _x=0,double _y=0){
		x=_x;y=_y;
	}
};
int dcmp(double x){
	if(fabs(x)<eps)return 0;
	return x<0?-1:1;
}
Point operator + (Point a,Point b){
	return Point(a.x+b.x,a.y+b.y);
}
Point operator - (Point a,Point b){
	return Point(a.x-b.x,a.y-b.y);
}
Point operator * (Point a,double p){
	return Point(a.x*p,a.y*p);
}
Point operator / (Point a,double p){
	return Point(a.x/p,a.y/p);
}
bool operator <(const Point &a,const Point &b){
	return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
bool operator == (const Point &a,const Point  &b){
	return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;
}
double Dot(Point a,Point b){
	return a.x*b.x+a.y*b.y;
}
double Length(Point a){
	return sqrt(Dot(a,a));
}
double Angle(Point a,Point b){
	return acos(Dot(a,b)/Length(a)/Length(b));
}
double angle(Point a){
	return atan2(a.y,a.x);
}
double Cross(Point a,Point b){
	return a.x*b.y-a.y*b.x;
}
Point Rotate(Point a,double rad){
	return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
Point GetLineIntersection(Point p,Point v,Point q,Point w){
	Point u=p-q;
	double t=Cross(w,u)/Cross(v,w);
	return p+v*t;
}
Point perpencenter(Point a,Point b,Point c){
	Point A,B,C,D;
	A=c;
	B.x=c.x-a.y+b.y;
	B.y=c.y+a.x-b.x;
	C=b;
	D.x=b.x-a.y+c.y;
	D.y=b.y+a.x-c.x;
	return GetLineIntersection(A,B-A,C,D-C);
}
int main()
{
     //freopen("data.in","r",stdin);
     //freopen("data.out","w",stdout);
     Point a,b,c;
	 int T;
	 cin>>T;
	 while(T--){
		 cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y;
		 Point ans=perpencenter(a,b,c);
		 printf("%.4f %.4f\n",ans.x,ans.y);
	 }
     return 0;
}


POJ 1673 三角形垂心,布布扣,bubuko.com

POJ 1673 三角形垂心

原文:http://blog.csdn.net/xianxingwuguan1/article/details/24929173

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!