欧拉是数学家心目中的英雄,欧拉积分具有重要的应用。先给出欧拉积分的性质以便为进入分数阶微积分打下基础。
1.1 $\beta$函数定义
易看出$0$和$1$为奇点,积分在$\alpha>0,\beta>0$时收敛.
a.对称性
B(α,β)=B(β,α)
只需作积分变量代换$x=1-t$即可.
B(α,β)


=
=
=
∫
1
0
x
α?1
(1?x)
β?1
dx
∫
1
0
(1?t)
α?1
t
β?1
dt
B(β,α)


b.递推公式
如果$\alpha>1$,那么成立等式
证明:利用分部积分法
B(α,β)



=
=
=
=
?1
β
x
α?1
(1?x)
β
|
1
0
+α?1
β
∫
1
0
(1?x)
β
x
α?2
dx
∫
1
0
(1?x)
β?1
(1?x)x
α?2
dx
α?1
β
∫
1
0
(1?x)
β?1
x
α?2
dx?α?1
β
∫
1
0
(1?x)
β?1
x
α?1
dx
α?1
β
B(α?1,β)?α?1
β
B(α,β)


从而有
一个特例$m,n\in N_{+}$
B(m,n)=(m?1)!(n?1)!
(m+n?1)!


c.其他变化形式
令$x=\sin^{2}t$,则有
B(α,β)=∫
π/2
0
sin
2α?1
tcos
2β?1
tdt
令$x=\frac{y}{1+y}$,则有
特别地,
1.2 $\Gamma$函数
定义
a.可微性
$\Gamma$函数无限次可微且
Γ
(n)
(s)=∫
+∞
0
x
s?1
ln
n
xe
?x
dx
b.递推公式
Γ(s+1)=sΓ(s)
证明:利用分部积分法
Γ(s+1)


=
=
=
∫
+∞
0
x
s
e
?x
dx
?x
s
e
?x
|
+∞
0
+s∫
+∞
0
x
s?1
e
?x
dx
sΓ(s)


一个特例
Γ(n)=(n?1)!
c.极限表达式(欧拉公式)
Γ(s)=lim
n→∞
n
s
(n?1)!
s(s+1)?(s+n?1)


证明:
Γ(s)





=
=
=
=
=
=
∫
∞
0
e
?x
x
s?1
dt
lim
n→∞
∫
n
0
(1?x
n
)
n
x
s?1
dt
lim
n→∞
n
s
∫
1
0
(1?τ)
n
τ
s?1
dτ
lim
n→∞
n
s
B(n+1,s)
lim
n→∞
n
s
Γ(n+1)Γ(s)
Γ(n+s+1)

lim
n→∞
n
s
(n?1)!
s(s+1)?(s+n?1)




d.余元公式
证明:
利用上式所得到的极限表达式,则得
Γ(s)Γ(1?s)


=
=
=
lim
n→∞
n
s
(n?1)!
s(s+1)?(s+n?1)
n
1?s
(n?1)!
(1?s)(2?s)?(n?s)

1
s
lim
n→∞
n1
(1+s)(1+2
s
)?(1+s
n?1
)
1
(1?s)(1?s
2
?(1?s
n?1
)(n?s)

1
s
1
∏
∞
n=1
(1?s
2
n
2

)




利用由Euler发现的等式
于是成立余元公式
特别地,令$s=\frac{1}{2}$
e.$\Gamma$函数与$\beta$函数的关系
证明:
作变换$x=u^{2},y=v^{2}$则
Γ(α)Γ(β)




=
=
=
=
=
∫
+∞
0
x
α?1
e
?x
dx∫
+∞
0
y
β?1
e
?y
dy
4∫
+∞
0
u
2α?1
e
?u
2
du∫
+∞
0
v
2β?1
e
?v
2
dv
4∫
+∞
0
∫
+∞
0
u
2α?1
v
2β?1
e
u
2
+v
2
dudv
4∫
π/2
0
cos
2α?1
θsin
2β?1
θdθ(Let u=rcosθ,v=rsinθ)
B(α,β)Γ(α+β)


f.$\Gamma$函数的推广
Γ(x)=∑
n=0
∞
(?1)
n
n+x
?1
n!
+∫
∞
1
t
x?1
e
?t
dt
这个等式对除去点$0,-1,-2,\cdots$以外的复数$z$定义$\Gamma(z)$.
g.所谓的倍角公式($Legendre$)
此式可作进一步的推广
Γ(s)Γ(s+1
m
)Γ(s+2
m
)?Γ(s+m?1
m
)=(2π)
(m?1)/2
m
1/2?ms
Γ(ms)
(一)欧拉积分,布布扣,bubuko.com
(一)欧拉积分
原文:http://www.cnblogs.com/zhangwenbiao/p/3705462.html