首页 > Web开发 > 详细

Apache Flink流分区器剖析

时间:2016-06-22 23:42:32      阅读:606      评论:0      收藏:0      [点我收藏+]

这篇文章介绍Flink的分区器,在流进行转换操作后,Flink通过分区器来精确得控制数据流向。

StreamPartitioner

StreamPartitioner是Flink流分区器的基类,它只定义了一个抽象方法:

    public abstract StreamPartitioner<T> copy();

但这个方法并不是各个分区器之间互相区别的地方,定义不同的分区器的核心在于——各个分区器需要实现channel选择的接口方法:

    int[] selectChannels(T record, int numChannels);

该方法针对当前的record以及所有的channel数目,返回一个针对当前这条记录采用的output channel的索引数组。(注意这里返回的是数组,说明一个记录可能会输出到多个channel这点我们后面会谈到)。

该接口方法来自于StreamPartitioner实现的接口ChannelSelector

分区器整体类图:

技术分享

GlobalPartitioner

全局分区器,其实现很简单——默认选择了索引为0的channel进行输出。

private int[] returnArray = new int[] { 0 };

@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,int numberOfOutputChannels) {
    return returnArray;
}

ForwardPartitioner

该分区器将记录转发给在本地运行的下游的(归属于subtask)的operattion。其实现跟上面的GlobalPartitioner一致,就不贴代码了。

ShufflePartitioner

混洗分区器,该分区器会在所有output channel中选择一个随机的进行输出。

private int[] returnArray = new int[1];

@Override
public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,int numberOfOutputChannels) {
    returnArray[0] = random.nextInt(numberOfOutputChannels);
    return returnArray;
}

HashPartitioner

hash分区器,该分区器对key进行hash后计算得到channel索引。它通过构造器获得KeySelector的实例(该实例用来获取当前记录的key)。

获得key后,通过其hashcodenumberOfOutputChannels取模后计算得出最终输出的channel的索引。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        Object key;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);
        }
        returnArray[0] = MathUtils.murmurHash(key.hashCode()) % numberOfOutputChannels;

        return returnArray;
    }

BroadcastPartitioner

广播分区器,用于将该记录广播给下游的所有的subtask。这里采用了两个标记:

  • set
  • setNumber
    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        if (set && setNumber == numberOfOutputChannels) {
            return returnArray;
        } else {
            this.returnArray = new int[numberOfOutputChannels];
            for (int i = 0; i < numberOfOutputChannels; i++) {
                returnArray[i] = i;
            }
            set = true;
            setNumber = numberOfOutputChannels;
            return returnArray;
        }
    }

从上面的实现可见,它返回了一个跟numberOfOutputChannels相等的数组(数组的大小就是即将输出到channel的个数)。

RebalancePartitioner

重平衡分区器,用于实现类似于round-robin这样的轮转模式的分区器。通过累加、取模的形式来实现对输出channel的切换。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record,
            int numberOfOutputChannels) {
        this.returnArray[0] = (this.returnArray[0] + 1) % numberOfOutputChannels;
        return this.returnArray;
    }

RescalePartitioner

也是以round-robin的形式将元素分区到下游subtask的子集中。

上游操作所发送的元素被分区到下游操作的哪些子集,依赖于上游和下游操作的并行度。例如,如果上游操作的并行度为2,而下游操作的并行度为4,那么一个上游操作会分发元素给两个下游操作,同时另一个上游操作会分发给另两个下游操作。相反的,如果下游操作的并行度为2,而上游操作的并行度为4,那么两个上游操作会分发数据给一个下游操作,同时另两个上游操作会分发数据给另一个下游操作。

在上下游的并行度不是呈倍数关系的情况下,下游操作会有数量不同的来自上游操作的输入。具体的实现代码同RebalancePartitioner

CustomPartitionerWrapper

自定义分区器包装器,该包装器封装了对于自定义的分区器的实现。自定义的分区测量依赖于Partitioner接口。它提供了自定义分区器的契约。核心接口方法是:

    /**
     * Computes the partition for the given key.
     * 
     * @param key The key.
     * @param numPartitions The number of partitions to partition into.
     * @return The partition index.
     */
    int partition(K key, int numPartitions);

该接口方法的描述很清晰,通过给定的key以及numPartitions返回partition的index.

CustomPartitionerWrapper通过构造器注入Partitioner的实例,然后在selectChannels方法中通过partition接口来获得最终的channel索引。

    public int[] selectChannels(SerializationDelegate<StreamRecord<T>> record, int numberOfOutputChannels) {

        K key = null;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance(), e);
        }

        returnArray[0] = partitioner.partition(key,
                numberOfOutputChannels);

        return returnArray;
    }

小结

以上的这些分区器,最终会体现在DataStream的API中用来对数据流进行物理分区。


微信扫码关注公众号:Apache_Flink

技术分享


QQ扫码关注QQ群:Apache Flink学习交流群(123414680)

技术分享

Apache Flink流分区器剖析

原文:http://blog.csdn.net/yanghua_kobe/article/details/51736308

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!